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Abstract

In this project, the PI has developed an efficient optimization framework, the Nested Partitions
(NP) method, for difficult combinatorial optimization problems (see publications). In particular,
the Job Shop Total Inventory Minimization Problem (JSTIMP) and the Multicommodity Distri-
bution System Design (MDSD) Problem were investigated. It has been demonstrated that the NP
framework can be integrated with many well-known optimization algorithms/methods to provide
hybrid algorithms for efficiently solving many large-scale combinatorial optimization problems.
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1. Executive Summary

Research under this grant emphasized the development of theory and efficient implementations
of hybrid NP algorithms for various classes of large-scale combinatorial optimization problems.
With these methods we have been able to solve problems that are intractable for other approaches.
In particular, a major area of investigation under this grant has been the solution of the Job-Shop
Total Inventory Minimization problem (JSTIMP) and the Multicommodity Distribution System
Design (MDSD) Problem. We have focused on the complexity issue of the JSTIMP and developed
theoretical results (Pan 2003, Chapter 4). For MDSD problem, we developed a process that is
implemented via looping constructs available in the AMPL modeling language (with CPLEX being
used as the branch-and-cut solver), and thus represents a novel framework for the utilization of
modeling-language/branch-and-cut software for large-scale combinatorial optimization problem.
As a significant new addition to the arsenal of optimization methodologies for tackling problems
of practical interest, NP and hybrid NP methods are worth further investigation in order to leverage
their potential in other application domains.

2. Introduction

2.1 Background

Planning and scheduling are some of the most important functions within many production sys-
tems. The objective of planning and scheduling is to maximize an appropriate measure of pro-
ductivity by ensuring the efficient use of raw materials and various resources, including labor and
machines, involved in the manufacturing process. Today’s globally competitive economy further
strengthens the traditional role played by planning and scheduling.

In a competitive environment, effective planning and scheduling have become a necessary con-
dition for survival in the marketplace. As a direct consequence of intensified competition from
business rivals overseas, domestic firms can no long afford the “luxury” of certain inefficiencies
in their processes that were previously considered standard industry practices. This means that
manufacturing firms and their partners in academia need to work hard together to find solutions.

Another complicating factor that puts still more pressure on the planning and scheduling func-
tions is the advent of flexible manufacturing resources. One example would be manufacturing cells
that consist of Computer Numerically Controled (CNC) machines and industrial robots. One other
example would be cross-trained workforce capable of undertaking a diverse set of tasks. This kind
of resource flexibility opens doors to new possibilities of greater productivity. However, it also
poses significant new challenges, which entail much more beyond the theories and methods pro-
vided by the classical planning and scheduling research. Our research is aimed at bridging this
gap.

With recent advancements in computing power and optimization methodologies, the develop-
ment of advanced planning and scheduling tools has almost come with reach. Such tools must be
able to communicate, collaborate, and integrate their planning and scheduling functionalities to
obtain optimal results throughout the manufacturing enterprise. This research project is intended
to bring state-of-the-art decision and optimization methodologies to bear in meeting this need.




2.2 Objectives

Specifical objectives of this research are to

e contribute to the state-of-the-art in scheduling theory by expanding its traditional scope into
the area of flexible resource scheduling,

e provide new optimal and heuristic scheduling algorithms for simultaneously allocating flex-
ible resources and scheduling jobs,

e generate tools to improve daily scheduling decisions in manufacturing systems that already
have flexible resources,

e develop new methodology for determining the level of cross-training needed and desired in
a manufacturing firm,

e provide guidelines for which production environments can realize the full benefits of re-
source flexibility,

e contribute to the state-of-the-art in simulation-based optimization through new algorithms
and stopping rules that can be applied for discrete stochastic optimization using simulation,
and

e provide a test-bed of discrete stochastic optimization problems, and by demonstrating the
feasibility of simulation-based optimization for real-life problems.

3. Methods, Assumptions, and Procedures

3.1 The Nested Partitions Method

The proposed methodology, the Nested Partitions (NP) method (Shi and Olafsson 2000), stems
from a combination of recent theoretical and technological advances which can explicitly tackle
the inherent complexity of many scheduling problems. The NP method, a newcomer on the stage
of optimization metrologies, is a significant addition to classical Linear Programming (LP)-based,
mixed integer solvers and heuristic-based search algorithms. Designed to take advantage of domain
knowledge, NP is better suited for incorporating heuristics, such as tabu search (Glover, McMilan,
and Novick 1989, Glover, McMilan, and Novick 1990) and genetic algorithms (Goldberg 1989),
than LP-based solvers. NP reflects the realization that on one hand, problems of practical interest
are often too difficult to solve to optimality, and that on the other hand, a “good,” quick solution is
all that is called for.

The NP method provides a powerful new optimization framework that combines adaptive
global sampling with local heuristic searches or domain knowledge. It uses a flexible partitioning
method to divide the search space into regions that can be analyzed individually and then aggre-
gates the results from each region to determine how to continue the search, that is, where to con-
_ centrate the computational effort. This partitioning approach makes the NP framework uniquely
well suited to distributed systems environments. Furthermore, with the NP framework there are
multiple tasks that can be distributed and the degree of parallelism is very flexible. It is therefore




also well suited to environments with heterogeneous resources, where machines may alternate be-
tween being available or busy during the execution of the optimization algorithm, as may be the
case for distributed web-based computing.

The NP method adaptively samples from the entire feasible region, or search space, and con-
centrates the sampling effort by systematically partitioning the feasible region. In each iteration of
the algorithm, it maintains the most promising region, that is, the sub-region that is considered to
be the most likely to contain the global optimum. This most promising region is then partitioned
into a given number of sub-regions, these sub-regions and the surrounding region are sampled, and
the sampling information is used to determine which region should be the most promising region
for the next iteration. However, instead of using the sample points directly, a local search can be
run with the sample point merely as a starting point, and the final result of the local search used
to represent that region. To incorporate such local searches, the NP framework has been success-
fully combined with both general-purpose heuristics such as genetic algorithms (Shi, Olafsson,
and Chen 2001), tabu search (Shi and Men 2003, Chalermdamerichai 1999), and spec1a1 purpose
heuristics such as some well-known heuristics for the traveling salesman problem (Shi, Olafsson,
and Chen 1999). Thus, a defining feature of the NP framework is that it can incorporate any heuris-
tic search or domain knowledge effectively. This is of great importance for it to be applicable as a
generic optimizer for a large variety of problems. Indeed, it can be thought of as a meta-heuristic
that guides the search of any general purpose or specialized optimization algorithm. Using the
NP framework, the proposed optimization engine will be very flexible in incorporating algorithms
such as tabu search, greedy search, and other state-of-the-art general purpose algorithms, as well
as the option of incorporating user supplied specialized algorithms.

3.2 Modeling Assumptions

We have devoted most of our effort to problems where the input is deterministic, while some of
our previous work focuses on stochastic problems (e.g., we studied the scheduling of the manu-
facturing cell environment in Olafsson and Shi (2000)). Undoubtedly, real-life problems almost
inevitably involves some probabilistic elements. However, a thorough understanding of a deter-
ministic problem is a necessary step toward understanding its stochastic counterpart. Furthermore,
the NP framework, which utilizes random sampling, simulation, and promising index estimation,
provides a natural means of incorporating heuristics developed in the research, and extending the
solution of a deterministic problem to its more realistic, and thus more useful, stochastic extension.

In those situations where stochastic problems are discussed, we have assumed exponential job
processing times.

3.3 Procedures for Scheduling Flexible Resources

We introduce a new model that optimizes a job shop schedule with respect to a performance mea-
sure called the total inventory. This work was motivated by our joint project with John Deere Hori-
con Works (located in Horicon, Wisconsin) to help one of their suppliers to revamp its scheduling
function. For the job shop total inventory problem, we introduce several single-machine relaxations
and discuss their complexity. Job reentrancy is also considered. Two approximation algorithms
are proposed, one based on an insertion technique and the other based on a shifting bottleneck




procedure. The effectiveness of the proposed algorithms is demonstrated through extensive com-
putational experiments.

Additional efforts are made to address issues espoused by the total inventory minimization
problem. Firstly, we further study the computational complexity of scheduling jobs on a machine
to minimize the sum of completion times subject to delayed reentrancy or delayed precedence
constraints. Job reentrancy occurs frequently in various manufacturing processes. Its delayed
version, where a certain amount of delay is required between two consecutive visits by a job to the
same machine, is very common, too. We study the complexity of delayed reentrancy in connection
with delayed precedence constraints, which is an area that has stimulated a number of research
efforts in recent years. Both preemptive and nonpreemptive schedules are considered.

Secondly, we consider a single-machine scheduling problem with release dates and deadlines
to minimize the weighted sum of completion times. We propose the first nontrivial lower bound
for this problem and define it as the optimal objective value of a particular linear program. The
linear program is then reformulated as an optimization problem with a piecewise linear, concave
objective function subject to inequality and non-negativity constraints. An O(nlogn) procedure
is developed to compute the lower bound, which is further tightened at an additional expense of
O(n?logn) time. We then incorporate the lower bound into a branch-and-bound solution proce-
dure. To curtail the search, we develop a node elimination technique that calls the solution proce-
dure recursively. Extensive computational experience confirms the effectiveness of our method.

Thirdly, we consider a scheduling problem in which n jobs with distinct deadlines are to be
scheduled on a single machine. The objective is to find a feasible job sequence that minimizes the
sum of weighted completion times. We present an efficient branch-and-bound algorithm that fully
exploits the principle of optimality. Favorable numerical results are also reported on an extensive
set of problem instances of 20-120 jobs.

Finally, we investigate the single-machine scheduling problem that minimizes the maximum
lateness. Despite its being strongly NP-hard (Garey and Johnson 1979), this problem has been
thought to be computationally inexpensive to solve using Carlier’s branch-and-bound algorithm.
Carlier’s algorithm (CA) has achieved excellent results on some randomly generated instances
consisting of 50-10,000 jobs. However, we find that hard instances of this problem exist for even
moderate size. We identify many such instances, each of which poses an insurmountable challenge
to CA. We propose a new lower bound and a problem size reduction procedure, and consider both
the problem and its inverse. Making use of the new techniques as well as incorporating a number
of existing ones, we have designed and tested a new branch-and-bound algorithm that substantially
outperforms CA in computation time. More importantly, the new algorithm is significantly less
susceptible to hard instances.

Machine shops are placing strong emphasis on innovative technologies to gain competitive
edge through superior quality, flexibility, and responsiveness. With two spindles and two indepen-
dent controlled turrets, automated material handling, as well as mill/turn capability, four-axis CNC
(Computer Numerically Controlled) turning centers allow turned components with high degree of
complexity to be produced quickly on a single machine.

The improved processing capabilities of four-axis CNC turning centers have also led to in-
creased complication in process planning for these machines. Manual generation and optimization
of process plans is highly inefficient due to the combinatorial characteristics that arise from mul-
tiple spindles and turrets. We propose a Nested Partitions (NP) algorithm to the process plan
optimization problem for four-axis turning centers. The experiments show that the NP algorithm
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is capable of rapidly producing high quality process plan and thus, is well suited for the user-
interactive computer-aided-process-planning framework in our context. Comparisons of results
from tabu search heuristic and branch-and-bound algorithm are also conducted.

Our most recent work is concerned with applying the NP method to problems in domain of
logistics and supply chain optimization. From a computational viewpoint, supply chain network
design problems are quite challenging because they are combinatorially explosive—some of these
optimization models have millions of variables and millions of constraints. Unsurprisingly, the
problem belongs to the class of NP-hard problems (Garey and Johnson 1979), which means that
any attempt to obtain an optimal solution for every instance of the problem will require unaccept-
able levels of computation time. Our research provides new global hybrid algorithms and software
tools for large-scale supply chain optimization and extends the range of problems for which the
hybrid randomized optimization approach significantly outperforms alternatives such as Branch &
Cut, Lagrangian Relaxation and heuristic search techniques not based on partitioning. We tested
our hybrid algorithm with different size test problems—the largest test problem having 15 prod-
ucts, 10 plants, 100 possible warehouse locations and 250 customers.

4. Results and Discussion

4.1 The Job Shop Total Inventory Minimization Problem

We consider scheduling problems in a job shop with m machines M = {1,...,m} and n jobs
J ={1,...,n}. Each job entails a chain of operations O; = (fj,...,l;), where f; and I; are the
first and the last operations, respectively. Each operation u can only be performed on a prescribed
machine m(u), taking p(u) units of time. The machines can perform at most one operation at a
time. Let binary relation A; on O; (j € J) represent the precedences between the operations
of job j, and binary relation & represent the pairs of distinct operations performed on machine
k € M. The former is transitive because u preceding v and v preceding w imply v preceding
w. The latter is symmetric because if u and v are performed on the same machine, so are v and
u. Notions from set theory (Mendelson 1997) can facilitate exhibition. A partial order is a binary
relation R on a set F such that R is transitive and Vz € F, (z,z) € R. (z,y) € Rand (y,7) € R
cannot simultaneously hold. A total order is a partial order such that Vz € F,y € F,z # y, either
(z,y) € Ror (y,z) € R. In the current context, A; is a total order on O}, and A := Uje gA;a
partial order on O := Uje 70;.

Let S(u) and C(u) denote the start time and the completion time of operation u. We are inter-
ested in finding nonpreemptive schedules, where C(u) = S(u) + p(u). There are two reasonable
requirements for any feasible schedule: (i) The operation precedences and (ii) the machine capacity
constraints must be satisfied (Balas 1979). With our notation,

C(u) < S(v), ¥ (u,v) € A; ' ¢))
C(u) < S(v) or C(v) < S(u), Yk € M, (u,v) € &. #))

Let S; := S(f;) and C; := C(l;) denote the start and the completion times of job j. CJSSP
assumes that S; > 0 for all 7, and seeks for a schedule that minimizes the makespan, i.e., the
maximum completion time of operations (denoted by Ciax := max; Cj).

Let Jj denote the deadline of job j. The underlying assumption is that there is sufficient capac-
ity to handle the workload with the given job deadlines. This assumption is almost always satisfied
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in shops with low-to-medium workload. In the cases where this assumption is violated, deadlines
can almost always be extended through negotiations between the manufacturer and the customer.
Assuming that deadlines will be met, our objective is to minimize the total cost due to WIP and
FGI.

Let D; := d; — C; denote the time elapsed between the completion of job j and the deadline.
We define Zf = pj D as a measure of the inventory holding cost incurred by the finished parts
associated with job j, where ,uF is the FGI holding cost per unit of time. We define ZW =

(C S; ) as a measure of the inventory holding cost attributed to the WIP associated w1th job
y, where u] is the WIP holding cost per unit of time. In real life, it is almost always the case that
,uJ < uj , which we assume here. Now we define the total inventory cost Z := Z Z; Wt Z; ¥ and
give the following formulation of the problem

min Z
(JSTIMP) s.t. (1), (2);
C;<d;,VjeJ.

When p; := py = ,uJ , the objective functionis Z = 3 _; pi(d; — S;). If we view JSTIMP
from a perspective that is backward in time, we will find that deadhnes become release dates
(denoted by 7;), and that start times become completion times. If we properly define new jobs by
reversing the chains of operations, the problem turns into one that minimizes the sum of weighted
Sflowtimes (Morton and Pentico ).

To the best of our knowledge, JSTIMP has not been addressed in the literature. The closest
existing formulation is that of Ahmadi and Bagchi (1992) who conSIder a partlcular permutation
flow shop problem in which the objective is equivalent to ours when ;r = uJ = 1 for all j; they
propose an enumerative procedure for the case when M| = 2. Another related but more restrictive
version is the single-machine weighted job earliness problem subject to no tardy jobs (without
considering job release dates, however), for which Ahmadi and Bagchi (1986b) and Chand and
Schneeberger (1986) investigate enumerative solution procedures. Ahmadi and Bagchi (1986a)
also study the special case when all jobs have equal weights.

To simplify our analysis, we did not include any constraint that makes references to the left
edge of the planning window. For example, we do not consider job ready times and machine
ready times. This simplifying treatment is similar to that adopted by Ahmadi and Bagchi (1992)
in studying their permutation flow shop problem. This guarantees that feasible schedules always
exist for JSTIMP.

Modified disjunctive graph representation

The disjunctive graph of Roy and Sussmann (1964) can be used to visualize JSTIMP but with
some modification. Take for an example a problem instance as shown in Figure 1, which illustrates
the job processing times and routings, and the disjunctive arcs indicate the grouping of operations
by machine. Moreover, we define job deadlines dy = 15, dy = 20, and d3 = 17. To bring the
deadlines into the picture, we associate a dummy node o/, with each job 7, and add a sink node
denoted by o;. In addition, o7, has a weight equal to Amax — d,, where dpax = max; dJ, and o, has
zero weight. For the purpose of distinguishing between the original nodes and the auxiliary nodes,
we refer to the former as regular nodes. Figure 2 details the extension that we have made to the




Figure 2: Modified Disjunctive Graph

basic disjunctive graph, as well as additional conjunctive arcs needed to connect regular nodes and
auxiliary nodes. Figure 3 shows what the graph might look like after all disjuncts are resolved.

In the following, we consider the case where p)’ = pf = p; forall j € J. Let p(u,v; g)
denote the longest path length from u to v in a graph G. Then, given an orientation R, the total
inventory Z is equal to ), u;p(fj, 01;G), where G = (O, AU R). Hence, JSTIMP can be
reformulated as

min Z wip(fi, 06 9), €)

st. G=(0,AUR),R is a feasible orientation.

Solution Approaches

Due to the intractability of JSTIMP, we resort to approximation algorithms to solve it. Approxi-
mation algorithms are extensively employed in the context of machine scheduling. In this section,
two efficient algorithms are proposed.

An insertion algorithm

The insertion algorithm is originally intended for the flow-shop scheduling problem (Nawaz et al.
1983). Werner and Winkler (1995) have later adapted it to solve CJSSP. The insertion algorithm
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Figure 3: Graph Representing a Solution

can also be adapted for solving JSTIMP, the total inventory minimization problem.

Here is an outline of the insertion algorithm. Initially, no operations are sequenced on the
machines, corresponding to graph (O, .A). Jobs are sorted by some rule, taking into account their
processing times and deadlines. Operations are then scheduled for each of the successive jobs
in the list. Specifically, assume operation u is to be scheduled on its required machine m(u)
during an iteration step. Suppose that there are already [ operations (o1, . .., 0;) whose processing
order has been determined on machine m(u) (o; processed first, and o; last). In addition, assume
that Ay is the partial order on O that is the union of A and the precedences among the operations
already scheduled on their required machines. We would like to optimally insert u among the other
operations. Regardless of where we insert u, graph (O, Ag) will be augmented with additional
arcs, reflecting the new precedences (denoted by R(u, 0;)) between w and 0;,i = 1,...,l. Itcanbe
shown that there exists at least one position among the I + 1 choices such that Ag U (Ul_; R(u, 0;))
is a partial order on @. Furthermore, we would like to choose the one that yields the minimal
value with respect to some function of graph (O, Ay U (Ui, R(u,0;)). Then, set A to Ay U
(U'_;R(u,0;)). When all operations are thus inserted, the algorithm will terminate with a solution
represented by Ap. A generic insertion algorithm is described below:

Generic Insertion Algorithm

Step 1. Sort jobs by rule R1.

Step 2. Starting with the first job in the sorted list, repeat the following until all operations of the
current job are scheduled:
(a) Select an unscheduled operation of the current job by rule R2. Label it u.
(b) Suppose that there are ! operations scheduled on machine m(u). Among the [ + 1
potential choices, insert u in the position that yields the minimal value with respect to
some function of graph (O, AgU (UL_; R(u, 0;)) (denoted by R3). If two or more positions
are equally preferable with respect to R3, choose among these positions with a tie-breaking
rule R4.

Assume that all jobs have no more than ¢ operations. Also, we assume that each operation is
equally likely to be performed on any of the m machines. Then, the running time of the algorithm
is Y7y i (G —1)e/m+1)0(( — )e+1) = O((n/m)n?c?). We find that in a real-world job
shop, n/m tends to be large.

Next we consider the settings for R1, R2, R3, and R4, which greatly impact the quality of
solutions constructed by the insertion algorithm. R1 can be devised, based on job information
such as deadline, total required machine time (the sum of processing times), etc. Let us take a
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perspective that is backward in time for scheduling jobs. Then, R1 can be any of the following five
choices:

1. LAD - Descending in order of job deadline

2. SMUT - Ascending in order of total machine time

3. LT - Descending in order of total machine time

4. LPT - Descending in order of job deadline less total machine time

5. LADaMT - Descending in order of job deadline less o times total machine time

For R2, we can start scheduling operations of a job either from the last to the first (denoted by
LF), or in the reverse order (denoted by FF). For the tie-breaking rule R4, we can select either
the left-most (LM) or the right-most (RM) machine position amongst those that yield the highest
value with respect to the metric in use. Finally, we discuss the choice of R3. Let §; denote
(0, Ay U (U_;R(u,0;)). Here, we choose Y, uip(f;j, 04 G1) for R3. Clearly, this function is
non-decreasing as more and more operations are inserted. This choice of R3 performs well, but it
is possible that there are better choices.

A few more words need to be said about the intuition behind these rules. First, Rule R1=LD
puts us into a perspective of time horizon, i.e., we try to push jobs backwards from their deadlines.
Hence, it seems that the choice of R2 that better matches R1=LD should be R2 =LF. Second,
Rule R1=SMT is based solely on the total machine time. A rule of thumb is that getting “small”
jobs through the system as quickly as possible generally helps to reduce work-in-process (WIP).
However, for the sake of simplicity, RI=SMT ignores the effect of manufacturing interference on
the actual amount of time a job will spend in the system, and the fact that jobs are due over a period
of time. R1=LMT is its opposite. Third, Rules R1=LDMT and R1=LDaMT somewhat resemble
the Material Requirements Planning (MRP) System approach to shop scheduling. Both take into
account job deadlines and to some extent, the amount of time a job will spend in the system, which
could be significantly longer than the total machine time due to manufacturing interference. In
R1=LDaMT, the multiple « is supposed to be determined empirically.

A shifting bottleneck procedure

The Shifting Bottleneck Procedure (SBP) is introduced by Adams, Balas, and Zawack (1988) for
solving CJSSP. We will adapt this procedure and apply it to JSTIMP.

Let us give a brief outline of the SBP for the makespan minimization problem. Let M, de-
note the set of sequenced machines, i.e., those machines on which operations have already been
sequenced. Initially, My = @. In each iteration, a processing order of operations on each unse-
quenced machine is determined by solving a relaxed single-machine problem to optimality, with
the processing orders on the sequenced machines fixed and the capacity on the rest of the unse-
quenced machines assumed to be infinite. The machine whose relaxed single-machine problem
yields the maximum optimal makespan is identified as the bottleneck (say, machine k). The pro-
cessing order that has attained the minimum makespan on the bottleneck machine is accepted. Mo
is set to Mg U {k}. Next, the processing order on each machine in M is, in turn, nullified and
then recalculated by solving a relaxed single-machine problem similar to the above problem, with




the processing orders fixed on the rest of the machines in M. During intermediate iterations, this
step is repeated three times; and, when the last machine is sequenced it is carried out until no more
improvement in the makespan is possible.

With the total inventory objective, we revise the algorithm and get a shifting bottleneck proce-
dure:

A Shifting Bottleneck Procedure for JSTIMP

Step 0. Set Mo=0,Q = Q.

Step 1. Identify the bottleneck k € M\ M, such that 3, p;p(f;, 06 AU o U R:) attains the
minimum, where Ry, solves IT'(0, A U Qq; Ri). Set Mo = Mo U {k}, Qo = Qo U R.

Step 2. For each k € M, reoptimize the operation sequence by solving IT'(O, AU (Q\R«; R},)-
Set Ri, = R,. Repeat this step 3 times if M, # M; else, repeat until there is no further
improvement.

Step 3. If My # M, go to 1; else, EXIT.

The running time of SBP depends on the time spent solving the relaxed single-machine prob-
lem. For instance, if we assume that there is no job reentrancy and p)” = pf = 1 for all
j=1,...,n, then (O, AU Qy; Ry) can be solved in O(h?) time (Chekuri et al. 2001), where h
is the number of operations on machine k. Suppose that all jobs have no more than c operations.
Assume that each operation is equally likely to be performed on any of the m machines while still
maintaining the nonreentrancy assumption, and additionally make a simplifying assumption that
in Step 2, reoptimization is always repeated three times even in the last iteration when My = M.
Then, the running time of SBP is 3_r, (m — k + 1 + 3k)O((nc/m)?) = O((m + 1)n*c*/m).
When m is large, the running time is equal to O(n?c?). Compared with the insertion algorithm
whose running time is O((n/m)n?c?) (Section 4.1), SBP is clearly asymptotically faster, provided
that n/m is large.

We have revised the subroutine for solving the relaxed single-machine problem in the above
procedure so that the algorithm also works when there are reentrant jobs. However, the guaranteed
1.58 worst-case lower bound is no longer valid for the single-machine relaxation.

We have created three sets of test problems from the demand data and machine routing in-
formation provided by R&B Grinding. The numbers have been modified to disguise proprietary
information. The number of operations per job varies and is generally far less than the total number
of machines on the shop floor. All problems in the three test sets are characterized by |M|—the
number of machines, |7 |—the number of jobs, |O|—the total number of operations, and addition-
ally, whether “delay” operations or reentrant jobs are present.

An operation is a “delay” if the machine that this operation requires has infinite capacity. Jobs
do not compete for machines on this type of operation, which can be started whenever necessary
and will be completed in the amount of time equal to the processing time. Some jobs are reentrant
meaning that they visit certain machines more than once.

Problem set 1 consists of four problems: SP1a, SP1b, SP2a, and SP2b. Table 1 lists the size
of each problem. SP1a and SP1b represent a much shorter planning horizon than SP2a and SP2b.
In SPla and SP2a, there are both “delay” operations and reentrant jobs. By removing “delay”
operations and reentrancy-causing operations in SP1a and SP2a, we come up with SP1b and SP2b,
respectively. Two other problem sets are generated in a similar fashion. All numerical experiments
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Table 1: Problem Set 1

Instance M| [J| |O]
SPla 71 157 422
SP1b 70 157 330
SP2b 140 1744 4922
SP2b 140 1744 3783

were conducted on an IBM Netvista Pentium III 733 MHz PC with 128 MB RAM, running the
Windows 2000 operating system.

Combinations of different settings for R1, R2, and R4 are tested, and the variants of 1A are
labeled according to schema R1-R2-R4. For example, LAD-LF-RM designates the algorithm in
which R1=LD, R2=LF, and R4=RM. The parameter o in R1=LDoMT rule is estimated for each
test problem by formula Zo/_; P;, where P; := EuEO p(u) is the total processing time of job j.
The value for Z, used in the calculatlon is the objectlve value of the solution found by algorithm
LPT-LF-RM. For comparison, we also run a heuristic algorithm DD on these same instances. DD
is based on a simple dispatching rule to schedule jobs backwards through time starting with jobs
due in the most distant future. Operations of a selected job from the last to the first are placed at
the beginning of the existing machine sequences.

Numerical results are presented in terms of both the objective value divided by the number of
jobs, and CPU time in seconds. DD is extremely fast, as we would expect for any dispatching rule;
however, it yields low-quality solutions. Because DD is too inferior in terms of solution quality to
make a meaningful comparison with any of the IA variants that we have tested, the data points for
DD are precluded. To some extent, we may infer that IA generally has much better performance
than dispatching-rule-based methods.

A few observations can be made. First, in terms of solution quality, IA is a significant improve-
ment over the dispatching rule DD at a moderate computational cost. In our numerical experiment,
each TA variant solves all four test problems in a total of less than 18 minutes. Second, due-
date-related algorithms with R2=LF yield the best performance with respect to solution quality.
Algorithms in this class are LPT-LF-R4, LADoMT-LF-R4, and LAD-LF-R4. LPT-LF-LM attains
the best solution quality; it realizes a 63% reduction in the objective value, compared to SMUT-
FF-RM, which yields the poorest results. Third, all the algorithms in the plot incur comparable
computational costs; in fact, all of them are within £3% from the median. Finally, the best choice
for R2 is LF, meaning that the last operation of a job should be scheduled first.

For SBP we adopt the same reoptimization scheme as in Adams et al. (1988), where a shifting
bottleneck procedure is proposed for CISSP. In our SBP, at most 3 reoptimization cycles are per-
formed during intermediary iterations. In the last iteration when all machines are sequenced, SBP
repeats reoptimization until no further improvement can be found. SBP is tested on problem sets 2
and 3, and results are compared with those of the best performing insertion algorithm.

We can make the following observations from the results. First, SBP uses only a fraction of
the CPU time required by the Insertion Algorithm (IA). The solution quality achieved by SBP
is superior: It outperforms IA in 12 out of the 15 problems in problem set 1, and 11 out of 15
problems in problem set 2. For problem set 1, the averages of the values in columns (3) and (6) are
9.15% and 74.16%, respectively. For problem set 2, the averages are 14.35% and 76.30%.

For the detailed computational results, please refer to 2.
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4.2 Multicommodity Distribution System Design (MDSD) Models

Figure 4: K products go from plants to warchouses to customers

Driven by the structures and data provided by our industrial partner, and similar models intro-
duced in the literature (Simchi-Levi and Bramel 1997, Geoffrion and Graves 1974) we introduce
the model below, which considers multiple manufacturing plants and multi-product families.

Features of our model include:

e A set of plants and customers are geographically dispersed in a region.

e Each customer experiences a demand for a variety of products that are manufactured at the
plants. Products are shipped from plants to warehouses and then distributed to customers.
For each shipping link and product there is a per unit shipping cost.

e Each customer’s demand for each product is met from a single warehouse (single-source
constraint).

e A given number of warehouses must be located in the distribution network from a list of
potential sites. A fixed annual operating cost must be paid for each warehouse that is opened.
Each warehouse has a capacity not to be exceeded.

We now give some notation that will be used throughout this paper. (see Figure 4)

The indices (sets) are as follows: i(I) = customers, j(J) = warehouses, k(K) = products
(commodities), /(L) = plants. We also use I, J, K and L to denote cardinalities of those sets. The
parameters are described in Table 2.

The problem variables are as follows:

1 if a warehouse is opened at site j
Y, = -
0 otherwise,

and

Uy, = amount of product k from plant ! to warehouse j foreachl € L,j € J, and k € K,

12




parameter | description

Cijk unit shipping cost from plant ! to warehouse j of product &

djix unit shipping cost from warehouse j to customer ¢ of product &
fi fixed cost of opening and operating a warehouse at site j

Wik demand of customer i for product &

Uik capacity of plant [ for product k

q; capacity (in volume) of warehouse located at site j

Sk volume of one unit of product £

Table 2: Problem Parameters

and

X = 1 if customer i receives product k£ from warehouse j
gik 0 otherwise

foreachj € Jiie Iandk € K.

The overall problem may now be stated. The objective function has three components. The
first component is the transportation cost between the plants and warchouses, the second part of
the objective function measures the transportation costs from warehouses to customers, and the
last term of the objective is the fixed cost of locating and operating warehouses. Single supplier
constraints guarantee that to every product/customer pair there is only one warehouse assigned.
Warehouse capacity constraints ensure that the total amount of products shipped from warehouses
does not exceed the capacities of the warehouses and that no shipments are made through closed
warehouses. Conservation at warehouses constraints ensure that the amount of product arriving at
a warehouse from plants equals the amount of products shipped from warehouses to customers.
Plant capacity constraints guarantee that for every product, the amount of that product supplied
by a plant does not exceed the production capacity of the plant for that product. The fixed num-
ber of warehouses constraint ensures that we locate exactly W warehouses. (Below we consider
a strengthened model obtained by adding the constraints X;;z < Y; implied by the warehouse
capacity constraints.) The algebraic description of the problem class is as follows:
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Using a factorial design approach, we generated 32 problem sets of different sizes and subse-
quently generated ten additional larger problems by selectively increasing in some instances the
number of customers to 250 or the number of products to 15. After randomly generating the data
for each problem, we froze the data so that various solution strategies could be compared for each
problem.

We used the AMPL 8.1 modeling language for mathematical programming to model the MDSD
problems. The solver that we use in conjunction with AMPL 8.1 is CPLEX 8.1. We implemented
a hybrid approach that we call C-NP-C (CPLEX-Nested Partitions-CPLEX) via looping constructs
available in the AMPL modeling language (with CPLEX being used as the branch-and-cut solver),
which represents a novel framework for the utilization of modeling-language/branch-and-cut soft-
ware for the generation, evaluation, and coordination of information corresponding to appropri-
ately partitioned global views of the original problem while taking good advantage of the structure
of the problem class. The AMPL code of our C-NP-C implementation can be found in the Ap-
pendix B.




5. Conclusions

We introduced JSTIMP, whose objective is to minimize the total inventory. We discussed relevant
complexity results of the problem and demonstrated how it could be approached with approxima-
tion algorithms through numerical examples. The reported work serves as a stepping stone for our
future research, and further improvement can be made along several directions.

First, we will extend our current model, which may be denoted by J|d;|WIP + FGI, to
include two additional constraints: job ready times and machine ready times. Some factors beyond
the scope of scheduling decisions might mandate that the first operation of a job cannot start earlier
than a certain time (job ready time). For example, the first operation of a job cannot start until the
shipment of the required raw material arrives; neither can it start before the beginning of the next
planning window. Furthermore, in a real-world manufacturing environment, scheduling problems
are solved repeatedly to obtain updated schedules as the planning window moves forward through
time. Most likely, some machines will be tied up with unfinished operations and thus will not
be available for new operations at the beginning of the next planning window. Hence, operations
contending for these machines have to wait until these machines become idle (machine ready time).
Both job and machine ready times can be handled by introducing a release date r; for each job 7,
and the extended model may be denoted as J|r;,d;|WIP + FGI. This requires the solution of a
general single-machine problem 1|r;, d;| 3~ w;C;, which is subsequently addressed.

Second, instead of solving the relaxed single-machine problem approximately, we may try to
use a branch-and-bound procedure to solve the problem to optimality. A higher solution quality is
likely to be attained at a higher computational expense. In addition, a by-product of this approach
is a lower bound on the optimal objective value for the original problem. This lower bound per-
haps can be employed in composing a branch-and-bound procedure aimed directly at the original
problem.

Third, the quality of the solution as well as the quality of the lower bound depends largely
on how well the relaxed single-machine problem approximates II(O, A U Q; R;). What we have
shown is simply one method of deriving a single-machine relaxation, and better relaxation schemes
could likely be devised.

Finally, we would like to incorporate JSTIMP and its solution methods into our general man-
ufacturing scheduling optimization framework based on the Nested Partitions method (Shi and
Olafsson 2000, Shi, Olafsson, and Chen 2001).

As to the supply chain optimization problem, our computational experience demonstrates that
while our new Lagrangian Relaxation (LR) approach often yields significantly better feasible solu-
tions than stand-alone CPLEX for the more difficult problems in the test suite, the use of CPLEX
within the NP framework of the C-NP-C hybrid generally outperforms even the LR methods in
terms of quality of feasible solutions. Specifically, for the 20 harder problems in the test suite,
C-NP-C obtains the best solution in 15 cases, the new LR approach is better in 3 cases, while
stand-alone CPLEX is better in only 2 cases (one of these cases corresponds to a standard MIP
model, and the other is the stronger model). Moreover, because of the effectiveness of the fast
warm starting procedure employed by NP, the times required by C-NP-C to reach those highest
quality solutions are generally only a few minutes (after which only rarely is a slightly better so-
lution found). This is in strong contrast to all of the other methods which either typically produce
poor quality solutions even after two hours (standard MIP approach) or which require initial so-
lution of the relaxation of the strong MIP formulation, an initialization procedure that itself often
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requires an hour or more (and, in one case, more than two hours) for the more difficult problems.
Thus, the NP framework for the use of BC solvers has proven to be efficient, reliably fast, and
effective in terms of providing high-quality solutions.

Our computational results demonstrate that for large-scale supply chain design problems, the
Nested Partitions approach significantly outperforms both general-purpose combinatorial optimiz-
ers (such the branch-and-cut solver within CPLEX) and specialized approaches such as those based
on Lagrangian relaxation. The Nested Partitions framework can effectively combine problem-
specific heuristics with MIP tools (such as AMPL/CPLEX), so for this problem class we have
developed an excellent warehouse ranking heuristic and used this heuristic to construct a “warm
start” procedure followed by an effective biased sampling approach (using CPLEX to solve the
MIPs corresponding to the samples) that uses this ranking and is guided by a global view of the
problem. This research has also established the applicability of the AMPL/CPLEX modeling-
language/solver combination as an excellent means for the implementation of the NP framework
for global meta-hybrids, and thus represents a novel and successful use of these powerful software
tools.

The Multicommodity Distribution System Design (MDSD) problem class investigated in this
research has a constraint, based upon interaction with our industrial partner (and also quite com-
mon in the literature) requiring the selection of exactly W warehouses from the list of candidate
locations. An interesting and equally-important alternative is the problem class in which at most
W warehouses can be chosen to satisfy the constraints. The Lagrangian Relaxation and hybrid
C-NP-C methods considered here may be suitably modified to handle that problem class.

We have demonstrated in this research that the looping constructs within well-known optimiza-
tion modeling languages combined with good branch-and-cut solvers provide an excellent tool for
implementing this approach to combinatorial optimization, and we plan to continue our develop-
ment of such methods and software for a variety of challenging problem classes.

Reader is referred to our paper given in Appendix A for more details and numerical results of
this research.
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Abstract

Large-scale supply chain design problems are generally intractable with respect to stan-
dard mixed-integer programming (MIP) tools such as the direct application of general-purpose
branch-and-cut (BC) commercial solvers such as CPLEX. In this research, we investigate a
nested partitions (NP) framework that combines meta-heuristics with MIP tools (including
branch-and-cut). We also consider a variety of alternative formulations and decomposition
methods for this problem class. Our results show that our NP framework is capable of efficiently
producing very high quality solutions to supply chain network design problems. For large-scale
problems in this class, this approach is significantly faster and generates better feasible solu-
tions than either CPLEX (applied directly to the given MIP) or the iterative Lagrangian-based
methods that have generally been regarded as the most effective structure-based techniques
for large-scale supply chain network optimization. The NP framework that we describe here
first employs an MIP-based heuristic in order to generate an efficiency ranking for the available
warehouses and then employs biased sampling (using this warehouse ranking and the NP global
viewpoint) to guide the determination of additional restricted MIP subproblems that are then
solved via CPLEX. This overall process is implemented via looping constructs available in the
AMPL modeling language (with CPLEX being used as the branch-and-cut solver), and thus
represents a novel framework for the utilization of modeling-language/branch-and-cut software
for the generation, evaluation, and coordination of information corresponding to appropriately
partitioned global views of the original problem while taking good advantage of the structure of
the problem class. We also briefly discuss some other large-scale MIP problem classes for which

this approach is expected to be very effective.




1 Introduction

In 2000, American companies spent $1 trillion, or about 10.1% of the United States gross national
product (GNP), on supply related activities (Delaney, 2003). This total includes the cost of move-
ment, storage and control of products across the supply chain, both within manufacturing plants
and warehouses and between different components of the supply chain. Furthermore, the trans-
portation costs accounted for $585 billion, or about 5.9% of the United States GNP. Unfortunately,
this huge investment typically includes many unnecessary cost components due to redundant stock,
inefficient transportation strategies, and other wasteful practices in the supply chain. In the face
of increased competition in global markets, budget tightening in the supply chain has become
essential.

In recent years, supply chain optimization has thus become a slogan among the world’s leading
manufacturers, distributors, and retailers. Supply chain optimization is a discipline that uses
algorithmic tools, advanced information systems and innovative business processes to guide the
movement of products from the point of origin to the point of consumption in the least amount of
time, for the least cost.

Typically, we can categorize the decisions to be made in supply chain optimization into three
categories based on horizons of their effects. They are strategic, tactical and operational level
decisions. The strategic level decisions have long-term effects on a company. These decisions
include the number, location, and capacity of warehouses and manufacturing plants, and the flow
of material through these locations. The tactical level decisions are usually made once every
quarter or once every year. These include purchasing and production decisions, inventory policies,
and transportation strategies. The operational level decisions are made on a day-to-day basis.
Scheduling, routing and truck loading are examples of decisions made at an operational level.

In this paper we address a strategic level issue: optimal supply chain network design. An
optimized supply chain network can drastically improve supply chain performance in a variety of
areas such as increased manufacturing throughput, reduced inventory costs, improved service levels,
and better return on assets. This potential for improvement is generating a great deal of interest
in supply network design optimization.

Our research work was motivated by a supply chain optimization project sponsored by a multi-
billion dollar global industrial manufacturing firm in the United States. The company employs more
than 20,000 people at hundreds of locations serving customers in more than 80 countries. Its supply
chain (assembly and distribution network) is composed of manufacturing/assembly plants, and
over 500 warehouse locations. There are multiple manufacturing sites that receive shipping orders,
make assembly parts, and warehouse over 300,000 different components and parts. The network of
fulfillment nodes (warehouses) supplies over 100,000 customer locations. These warehouse locations
can be considered to be a stocking point of product.

From a computational viewpoint, supply chain network design problems are quite challenging
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because they are combinatorially explosive - some of these optimization models have millions of
variables and millions of constraints. The problem belongs to the class of NP-Complete problems
(Garey and Johnson, 1979), which means any attempt to obtain an optimal solution for every
instance of the problem will require unacceptable levels of computing time.

There are two principal technologies for large-scale supply chain optimization problems: 1)
exact algorithms (such as linear-programming-based BC and constraint programming techniques)
that are guaranteed to find optimal solutions within a finite (but possibly unacceptably large)
amount of computation, and 2) heuristic algorithms that quickly find good, but not necessarily
optimal, solutions. Exact algorithms based on relaxation are powerful, useful and vitally necessary

in optimization. Unfortunately, these approaches also have some limitations:

e certain classes of problems remain difficult for these technologies (for example, product design
and scheduling problems, and large-scale problems)

e in MIP models, the user must express all problem constraints in terms of linear relationships
that usually require the introduction of many additional variables and constraints (this makes
the model much more complex, and the corresponding continuous relaxation is often a very

poor approximation to the original problem)

o the use of Branch & Cut and related general-purpose technologies limit the user’s ability to

incorporate domain knowledge into the solution procedure.

There are numerous heuristics for solving supply chain problems. However, rather than consid-
ering these heuristics in isolation (or employing a randomized multi-start mechanism), our Nested
Partitions (NP) approach obtains maximum benefit from their availability by employing them
within a global framework of partition-based strategies. We use the term global meta-heuristic
for the approach resulting from such a framework since it repeatedly applies one or more heuris-
tics within partitions of the original domain in order to maintain a global view of the problem.
This global view allows a proof of optimality to be constructed in spite of the use of heuristics.
(Of course, as with BC, such a demonstration of optimality may be computationally expensive,
so termination with a solution of guaranteed high quality is, from a practical viewpoint, often a
preferred alternative.) The term global meta-hybrid is used to denote the combination of a global
meta-heuristic (such as NP) with lower-bounding techniques (such as linear programming). Such a
hybrid allows synergistic coordination of the lower bound information with the upper bounds and
feasible solution data from the heuristic.

Our research provides new global hybrid algorithms and software tools for large-scale supply
chain optimization and extends the range of problems for which the hybrid randomized optimization
approach significantly outperforms alternatives such as Branch & Cut, Lagrangian relaxation and
heuristic search techniques not based on partitioning. We tested our hybrid algorithm with different
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locations and 250 customers.
The remainder of the paper is organized as follows: section 2 describes the Multicommodity
Distribution System Design (MDSD) Models that are the applications focus of this paper, section 3
deals with existing solution techniques with emphasis on branch-and-cut and Lagrangian relaxation
approaches, our new methods are presented in section 4, and computational results comparing
| existing methods with the new techniques are given in section 5. Conclusions and further research

|
|
|
size test problems - the largest test problem having 15 products, 10 plants, 100 possible warehouse

directions for our new approach conclude the paper.

2 Multicommodity Distribution System Design (MDSD) Models

J warehouses

I customers

Figure 1: K products go from plants to warehouses to customers

Driven by the structures and data provided by our industrial partner, and similar models
introduced in the literature (Simchi-Levi and Bramel, 1997), (Geoffrion and Graves, 1974) we
introduce the following model, which considers multiple manufacturing plants and multi-product
families.

2.1 MDSD Model MIP Formulation

Our model has the following features:

o A set of plants and customers are geographically dispersed in a region.

o Each customer experiences a demand for a variety of products that are manufactured at the
plants. Products are shipped from plants to warehouses and then distributed to customers.
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parameter | description
Cijk unit shipping cost from plant [ to warehouse j of product &
djik unit shipping cost from warehouse j to customer i of product &
fi fixed cost of opening and operating a warehouse at site j
Wik demand of customer ¢ for product k&
Uik capacity of plant ! for product k&
gj capacity (in volume) of warehouse located at site j
Sk volume of one unit of product %

Table 1: Problem Parameters

For each shipping link and product there is a per unit shipping cost.

e Each customer’s demand for each product is met from a single warehouse (single-source

constraint).

e A given number of warehouses must be located in the distribution network from a list of
potential sites. A fixed annual operating cost must be paid for each warehouse that is opened.

Each warehouse has a capacity not to be exceeded.

We now give some notation that will be used throughout this paper. (see Figure 1)

The indices (sets) are as follows: 4(I) = customers, j(J) = warehouses, k(K) = products
(commodities), I(L) = plants. We also use I, J, K and L to denote cardinalities of those sets. The

parameters are described in Table 1.

The problem variables are as follows:

and

Uyjx = amount of product k from plant ! to warehouse j for eachle L,j€J, and k € K,

and

Xjik =

1 if a warehouse is opened at site j
Y= .
0 otherwise,

1 if customer i receives product k& from warehouse j
0 otherwise
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for each j € Jyi €I and k € K.

The overall problem may now be stated. The objective function has three components. The
first component is the transportation cost between the plants and warehouses, the second part of
the objective function measures the transportation costs from warehouses to customers, and the
last term of the objective is the fixed cost of locating and operating warehouses. Single supplier
constraints guarantee that to every product/customer pair there is only one warehouse assigned.
Warehouse capacity constraints ensure that the total amount of products shipped from warehouses
does not exceed the capacities of the warehouses and that no shipments are made through closed
warehouses. Conservation at warehouses constraints ensure that the amount of product arriving
at a warehouse from plants equals the amount of products shipped from warehouses to customers.

Plant capacity constraints guarantee that for every product, the amount of that product supplied
by a plant does not exceed the production capacity of the plant for that product. The fixed
number of warehouses constraint ensures that we locate exactly W warehouses. (Below we consider
a strengthened model obtained by adding the constraints X < Y; implied by the warehouse
capacity constraints.) The algebraic description of the problem class is as follows:
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Plant-warehouse shipping costs

Warehouse-customer shipping costs

‘Warehouse fixed costs

Plant capacity

Warehouse capacity

Conservation at warehouses

Fixed number of warehouses

Single supplier

3 Existing Solution Techniques for MDSD Models

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Location problems cover a wide range of problems in which the goal is to locate a set of facilities

in a distribution network while satisfying the given constraints. Location models (even the most

basic ones) are generally computationally intractable for large problem instances. One of the major

reasons for the recent extensive interest in formulation and implementation of location models is

due to the advances in algorithms and computer technologies that allow larger instances to be

solved in reasonable times.

In the MDSD models, the goal can be the selection of a predetermined number of warehouses

that minimize cost (the focus of this paper) or simply finding an optimal set of warehouses to

minimize the total cost. Also, the problem may require that each customer is supplied by exactly

one warehouse for each product (single-source) (Neebe and Rao, 1983) or may allow splitting of the
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demand for a product by a customer among a number of warehouses (multiple-source)(Simchi-Levi
and Bramel, 1997). The assumption of a customer getting delivery for a particular product from
only one warehouse does not preclude solutions in which a customer gets shipments from other
warehouses, but these shipments must be for different products. On the other hand, it is assumed
that the warehouse can receive shipments from any plant for any product.

The literature on warehouse location problems is very extensive, dealing with different models
and different scenarios. (Cordeau et al., 2001) proposed assigning locomotives and cars to trains
as a multicommodity network flow-based model. They formulated the problem as a mixed-integer
problem, and solved it by a branch-and-bound method that relaxes some of the integrality con-
straints. At each node of the tree, they solve a MIP problem by Benders decomposition. (Lee,
1993) proposed a heuristic based on Benders decomposition and Lagrangian Relaxation for a mul-
ticommodity capacitated single-layer (no plants) facility location problem with a choice of facility
type in which each facility type offers a different capacity for a particular product with different
fixed setup costs. The largest test problem had 200 possible warehouse locations, 200 customers,
20 products, and 10 facility types.

However, not much work has been done on the two-layer warehouse location models (Hindi and
Basta, 1994). One of the classical papers in solving locations problems is (Geoffrion and Graves,
1974), which solves the MDSD problem using Benders decomposition. Their largest test problem
had 5 products, 3 plants, 67 possible warehouse locations and 127 customer zones. The focus of
this research will be these type of problems where multiple layers and multiple product types are
considered.

Recent literature on facility location models offers several additional solution techniques. These
include but not are limited to branch & bound and cutting plane algorithms ((Hindi and Basta,
1994), (Aardal, 1998)), Lagrangian Relaxation techniques ((Pirkul and Jayaraman, 1996), (Klincewicz
and Luss, 1986)), simulated annealing ((Mathar and Niessen, 2000)), and Tabu search algorithms
((Crainic et al., 1996), (Delmaire et al., 1999)). Branch & Bound (BB), Branch & Cut, and La-
grangian Relaxation approaches are currently the most widely applied solution techniques in this

area and will be discussed in the following sections.

3.1 Branch & Bound and Branch & Cut Algorithms

The Branch & Bound algorithm can be applied to large and numerically difficult Mixed Integer
Programming (MIP) problems. A Mixed Integer Program is essentially a Linear Program (LP)
with integrality restrictions on one or more variables. The Branch & Bound algorithm guarantees
optimality (assuming the problem has an optimal solution) if allowed to run to completion, which
might require unacceptably large solution times.

The algorithm keeps track of related LP subproblems in a tree format. The algorithm begins
by relaxing the original problem (the root node in the tree) and solving it. The relaxed problem




is an LP in which all integrality constraints are dropped from the original problem. The solution
obtained from the relaxation will be the optimal solution if integrality restrictions are not violated.
In most cases, however, the LP relaxation is likely to yield fractional values for certain integer
variables. Provided that an integer optimal solution has not been found, the algorithm proceeds
by selecting a fractional variable for branching. New subproblems are then generated by fixing this
variable to 0 and to 1 (only binary variables considered here). The procedure continues recursively
by solving the LP relaxations of the new subproblems.

In the Branch & Cut algorithm, if the solution to the relaxation has one or more fractional
variables, cuts will be generated. Cuts are constraints that cut away areas of the feasible region of
the relaxation that contain fractional solutions but exclude no integer solutions. There are several
types of cuts that can be utilized. If the solution to the relaxation still has one or more fractional-
valued integer variables after the cuts are applied, then it branches on a fractional variable to
generate two new subproblems.

We used the AMPL 8.1 modeling language for mathematical programming to model the MDSD
problems. The solver that we use in conjunction with AMPL 8.1 is CPLEX 8.1.

The reader is referred to (Mitchell, 2000) for a discussion of Branch-and-Cut algorithms for
combinatorial optimization problems. (Hindi and Basta, 1994) obtained feasible solutions for the
multiple-source MDSD problem using branch-and-bound, and obtained lower bounds using Dantzig-
Wolfe decomposition. Their largest test problem had 3 products, 10 plants, 15 possible warehouse

locations and 30 customers.

3.2 Lagrangian Relaxation (Conventional Approach)

Many hard integer-programming problems can be viewed as easy problems complicated by a rel-
atively small set of side constraints (Wolsey, 1998). Dualizing the side constraints produces a
Lagrangian problem that is easy to solve and whose optimal value is a lower bound (for minimiza-
tion problems) on the optimal value of the original problem. The Lagrangian problem can thus be
used in place of a linear programming relaxation to provide bounds in a Branch & Bound (BB) algo-
rithm (Fisher, 1981). (Beasley, 1993) demonstrates the use of Lagrangian relaxation (LR) methods
to solve various location problems. In our research, we consider two different LR approaches. In
the first, which we term the conventional approach, we relax single supplier constraints and con-
servation at warehouse constraints, a common practice in the literature ((Pirkul and Jayaraman,
1996), (Simchi-Levi and Bramel, 1997)). (In section 4, we introduce a new LR approach for this
problem.) In particular, we relax single supplier constraints (with multipliers A;;) and conservation

at warehouse constraints (with multipliers 6;;). The resulting problem is

I J

L J K K J
min ZEZ ciixUtjk + ZZZ djikwikaik+Z fiYi+

=1 j=1k=1 i=1 j=1 k=1 j=1




I K
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j=1k=1 i=1 i=1 k=1
subject to the following constraints: plant capacity (U variables), warehouse capacity (X,Y vari-
ables), fixed number of warehouses (Y variables).
Because the relaxation of conservation of flow decouples warehouse shipments from plant ship-
ments, this problem can be decomposed into two separate problems Ppw and Pwc:

e Let Zpwy be the optimal value of the plant-warehouse subproblem Ppw:
L J K
Zpw = min »_ Y Y [Clgk - ]k] Uijk

=1 j=1 k=1

J
st. Y Uj<ux VIeLkeK
j=1
Ujx>0 VieLjeJdkekK

e Let Zwc be the optimal value of the warehouse-customer subproblem Pwc:

J I K J
Zwc = min 3 > Y [djikwik = Aip + ajk’wik] Xjw+ Y, [
j=1i=1 k=1 j=1
I K
s.t ZE skwikXjik < ¢;Y; vied
i=1 k=1
J
>y ew
=1

Y;, X €{0,1} Viel,jeJkeK

Since there is no coupling between warehouses except for the cardinality constraint E;-Izl Y; =
W, the preceding warehouse-customer problem can be solved by considering a set of J single ware-
house problems. Specifically, for every warehouse j , the following knapsack problem (corresponding
to Y; =1 ) with IK items is solved to obtain a “value” for warehouse j:

Zlo = min Z Z [ jikWik — Aik + 9jkwik] Xjik + [

i=1 k=1

I K

s.t. Z Z spwikXjix < gj

i=1 k=1
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and the optimal solution to Py¢ is then obtained by concatenating the best W solutions of these
separate problems (Simchi-Levi and Bramel, 1997) and closing the remaining warehouses. Then
Zxrg = Zpw+Zwc+Ii Lk ik is a lower bound to the original problem. To approximately maximize
Z) 6, we use a subgradient algorithm.

Since solving the Lagrangian subproblems usually results in solutions that are not feasible the
original problem, many implementations of this technique use a heuristic to obtain feasible solutions
from relaxed solutions. (Pirkul and Jayaraman, 1996) used Lagrangian Relaxation to obtain lower
bounds for the MDSD problem while employing a heuristic to obtain feasible solutions at every
iteration. Their largest test problem had 10 products, 10 plants, 30 possible warehouse locations
and 75 customers.

In our implementation of the Lagrangian approach as described below, we employed a different
heuristic (Simchi-Levi and Bramel, 1997). This heuristic first chooses the W warehouses defined by
the best W solutions of the knapsack problems for each warehouse defined above, and then solves
a modified version of the original problem with Y; fixed to 1 for the W best warehouses and Y
fixed to 0 for the others. While this solution is not guaranteed to be feasible, in our experience we
have found that it nearly always feasible. The capacities of the warehouses are generated in such
way that in the feasible solutions warehouse capacities are utilized at around 85%. In any event,
it is not necessary that a feasible solution be produced at every LR iteration. Solving this MIP
typically takes only a fraction of time required for solving the original problem, and never more

than a few seconds for the problems in our test set.

4 New Approaches for MDSD

In this section, we introduce three new approaches to the MDSD problem. In subsection 4.1, a
stronger formulation for the MIP is given; subsection 4.2 introduces a new Lagrangian Relaxation
formulation related to this stronger formulation. In subsection 4.3, we describe a new hybrid
approach that uses the looping constructs of the AMPL modeling language to construct MIP
subproblems (solved via CPLEX) that correspond to an implementation of the Nested Partitions
(NP) framework. Computational results demonstrating the superiority of this NP framework are

given in section 5.

4.1 MIP CPLEX 8.1 (Strong Formulation)

The computational results below demonstrate that BC applied to the MIP formulation of the
MDSD problem given in subsection 2.1 provides poor quality lower bounds for the large test prob-
lems solved. To obtain improved lower bounds, taking advantage of the fact that the variable Y;

associated with warehouse j must be equal to 1 if there is any shipment of any product from this
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warehouse to any customer, we include the following set of additional constraints in the problem

formulation.

Xk <Y; Viel,jelJkeK (4.1)

The addition of these constraints results in a much tighter LP relaxation. For example, with
these constraints it is no longer necessary to impose integrality on the Y variables, since this is
guaranteed in any optimal solution in which the X variables are integer.(Computationally, it is
useful to maintain integrality of the Y variables for branching purposes.) Moreover, the lower
bounds obtained from the corresponding LP relaxation are much better than the BC results for
the original formulation. However, including these additional constraints causes the times taken to
solve the LP relaxation at the root node to be considerably larger than for the original formulation.
These issues are considered further in the section on computational results (see Table 5). We also
note that the LR approach of section 3.2 can be started with duals from the LP relaxation of the

strong formulation and will then provide even better lower bounds.

Proposition 1 The lower bound obtained by maximizing the function Zy g introduced in section
8.2 is at least as strong as that obtained by solving the strong formulation LP relazation.

Proof: Consider an equivalent version of Pyc that includes the cut constraints (4.1). Let Z be
the optimal value of the strong formulation LP relaxation and let X and § be the optimal dual
variables associated with constraints (2.5) and (2.3), respectively, in that relaxation. Let Z be the
lower bound corresponding to Zpw + ¥ ¥k ik plus the optimal value of the LP relaxation of the
equivalent version of Py . Complementary slackness ensures that the lower bound Z will be equal
to Z. Thus, when we impose integrality in Pwc and delete the redundant constraints (4.1), we
will have Z5 5 > Z, with strict inequality being likely. Moreover, maximizing Zj g will likely yield
an even better lower bound than Z5 5. |

4.2 New Lagrangian Relaxation Method

The inclusion of the constraints (4.1) allows us to derive a new Lagrangian Relaxation approach
based on decoupling the warehousing decisions from the rest of the problem. In particular, we relax
warehouse capacity constraints (2.2) (with multipliers ¢;) and strong formulation cut constraints

(4.1) (with multipliers Gji). The resulting problem is

L J K I J K J
min Y D Y Ui+ SN diwwan X + > 5Vt
1=1 j=1 k=1 i=1 j=1 k=1 =1
J I K J K
> o [ZZ skwik Xjik — Qij] + 33" Bia [ink - Y}']
=1 Llicik=n j=1i=1 k=1
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subject to the following constraints: plant capacity (U variables), conservation at warehouses (X, U
variables), fixed number of warehouses, single supplier (X variables).

Since the warehouse Y; variables are now decoupled from the shipping variables, this problem
can be decomposed into two separate problems Pg and Py. They are the following:

e Let Zg be the optimal value of the shipping subproblem Ps:

L J K J K J I K
Zs=min Y Y > ajlyk+ > [djik + Oéjsk] winXjie + Y O Y BinXijik
1=1 j=1 k=1 =1 =1 k=1 7=1=1 k=1
J
st. Y Xup=1 VieLkeK
i=1

I L
> wa Xk = Y Ugp VieJkeK

J
S Up<vi VieLkeK
j=1

Xk €{0,1} Vi€ Jie,ke K

e Let Zw be the optimal value of the warehouse subproblem Pyy:

J K
Zw = min Z [f]- - ajqj]Yj - ZZZﬂjiij
=1 ‘

j=1i=1 k=1

J

s.t. Z Y, =W
i=1

Y;€{0,1} VjeJ

Then Zg o := Zg + Zw is a lower bound to the original problem.

Proposition 2 The lower bound obtained by maximizing the function Zg x is at least as strong as

that obtained by solving the strong formulation LP relazation.

Proof: Consider Z, the optimal value of the strong formulation LP relaxation. If we choose &
and [ to be the optimal dual variables associated with constraints (2.2) and (4.1), respectively and
compute a lower bound without imposing integrality in Zw, complementary slackness ensures that
this lower bound will be equal to Z. When we impose integrality in the formulation, we will thus
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have Zg 5 > Z, with strict inequality being likely. Moreover, maximizing Zg o will likely yield an
even better lower bound than Zj 5. n

To approximately maximize Zg,, as with the conventional LR approach, we use a standard
subgradient algorithm. To generate feasible solutions, we can simply take the optimal solution to
Zyw and solve the original problem with Y} fixed to 1 for these warehouses and Y fixed to 0 for the
rest.

We note that the shipping subproblem is considerably more complicated to solve than either of
the subproblems of the conventional LR method. For this reason, we expect one evaluation of Z)
to take less time than one evaluation of Zg o; that is, one iteration of the conventional LR method
will likely take less time than one iteration of the new method. However, the added subproblem
complexity means that maximizing Zg o will likely provide a better lower bound than maximizing
Z). That is, relaxing less yields an LR method that can be expected to provide a tighter lower
bound that will compensate for the smaller number of iterations that can be performed in a given
amount of time. Our computational results indicate that this often happens (see Table 7).

An additional advantage of the new formulation is that, at each iteration, the set of warehouses
used in the construction of the feasible solutions (that provide upper bounds) depends only on the
current Lagrangian multipliers (and original problem costs), and thus the composite warehouse
costs in Py may be thought of as a warehouse ranking. If the Lagrange multipliers are good in the
sense that the composite costs correspond to a good warehouse ranking, a good feasible solution will
be produced. In the conventional LR method, the warehouse set used to generate a feasible solution
is derived from Pyc, but the customer allocation values that play a key role in determining the
optimal warehouse set in Py ¢ are not subsequently re-used in the upper bounding process (since
these values may be conflicting in the overall problem corresponding to the warehouses selected by
the procedure). Since the fact that this set of warehouses is the best set for Py/c depends not only
on the current composite warehouse costs, but also on the composite customer allocation costs in
Pywc, one might expect that not being able to re-use a key part of the LR solution means that such
an approach is inferior to one in which all of the solution of one of the LR subproblems is re-used.

This expectation is borne out by our computational results (Table 7).

4.3 Hybrid CPLEX-Nested Partitions-CPLEX Approach (C-NP-C)

We first sketch a generic nested partitions procedure (Shi and Olafsson, 2000) and then describe
an implementation of Nested Partitions (NP) that takes advantage of the structure of the supply
chain problem.

Consider the following combinatorial optimization problem, where © is a finite set: mingee f(z).
(In the context of the MDSD problem class, © corresponds to the set of values of the binary
warehouse selection variables that satisfy the warehouse cardinality constraints (2.4), and f(x)

is the optimal value of the supply chain problem with the warehouse set determined by x.) The
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NP framework can be briefly described as follows. In each iteration of the algorithm we assume
that we have a partition and a region (subset belonging to the partition) of © that is considered
the most promising (initially, this is ©). We then partition this most promising region into sub-
regions (for example, M sub-regions) and aggregate the other regions (the aggregate is termed the
complementary region) into one region. At each iteration, we thus consider M + 1 disjoint subsets
of the feasible region ©. Each of these M + 1 regions is sampled using some random sampling
scheme, and for each region a promise indez is calculated. (A variety of approaches may be used
to calculate the promise index (see (Shi and Olafsson, 2000)), but in the results below we simply
used the objective value of the best sample in the region. Other possibilities in this context would
involve functions that took into account both the best sample, which provides an upper bound
for the region, and the LP relaxation value, which provides a lower bound for the region.) These
promise indices are then compared to determine which region is the most promising in the next
iteration. If one of the child subregions is found to have the best promise index, this subregion
becomes the most promising region. (In an ideal instance, an unbroken sequence of child regions
containing an optimal solution would be obtained, yielding a depth-first search that quickly leads
to an optimal solution.) If, on the other hand, the surrounding region is found to have the best
promise index, a subset of the surrounding region becomes the most promising. The new most
promising region is then partitioned and sampled in a similar fashion. Since © is finite, in a finite
number of iterations we reach regions that contain only a single sample point, and for such a region
the sampling procedure generates the single sample point, and no further consideration of that
region is required. As the algorithm evolves, a sequence of most promising regions o(k) will be
generated, where o(k) is the most promising region in the kth iteration. In (Shi and Olafsson,
2000), it is shown that o(k) is a Markov chain with all the global optima as its absorbing states.
Thus, global convergence is guaranteed. The only requirement on the random sampling procedure
is that each point in the region has a positive probability of being selected. Hence there is much
flexibility in selecting a sampling procedure.

A more formal description of a generic NP approach is as follows:

1. Partitioning

The first step is to partition the current most promising region into several subregions and ag-
gregate the remaining regions into one region, called the complementary region. The partitioning
strategy imposes a structure on the feasible region and is therefore very important for the rate of
convergence of the algorithm. Ideally, we would like to see most of the good solutions clustered
together in the a few subregions after the partitioning. This would allow the algorithm to quickly
concentrate the search on these subsets of the feasible region.

2. Random Sampling

Next, we generate samples from the subregions and from the complementary region. This can

be done in almost any fashion, provided that each solution in a given sampled region is selected with
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a positive probability. Uniform sampling is one common way of sampling, but it is often worthwhile
to incorporate special structures into the sampling procedure so that the sample quality can be
improved. For example, we can use some weighted sampling scheme to generate a sample. The
weight can be determined by carefully considering the system structure so that some solutions have

a higher probability of being chosen than others.

3. Calculation of the Promise Index
For each region oj, j = 1,2,...., My() + 1 define a promising index function, I(o;),I: ¥ — R,
and calculate the promise index. For example, an ideal promise index function would yield the best

performance value in the region.

I(0) = minges f(6),0 € L.

Since this index cannot in general be calculated for a region, we estimate the promise index

I{(o;) by using N; sample points:

f(aj) = mini=1,2,...,N,~f(9ji)aj =12,..., Mo+ 1.

Notice that f(o;) is a random variable. Other alternatives for I(g;) can be found in (Shi and
Olafsson, 2000) and (Shi et al., 2001).

4. Backtracking

Determine the new most promising index

Jk € arg minj=1,2,...,M,(k)+1j(aj)’j =12,..., Mo'(k) +1

If more than one region is equally promising, the smallest such index is chosen. The new most
promising region o(k + 1) is a child of the current most promising region unless the new most
promising index corresponds to the complementary region, in which case backtracking is performed
(for example, to the parent of the current most promising region or to the smallest subregion yet
generated that contains the best sample point).

NP can be regarded as a generic algorithm capable of supporting a variety of partitioning
techniques, sampling methods, promise indices, and backtracking rules. For example, two extreme
alternatives of backtracking are to the parent of the promising region on the one hand, and, on the
other hand, to the smallest subregion yet generated that contains the best sample point. These
alternatives roughly correspond to depth-first and breadth-first (or best bound or estimate) BB
strategies.

It should be noted that the promise index is defined on a sequence of sets. Therefore, we
can incorporate any effective heuristic methods into the algorithm and use them to calculate the

promise index function. This is possible because the only requirement for selecting an appropriate
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promise index is that such an index function should agree with f(-) on regions in maximum depth,
i.e., the regions that contain only one sample point. Moreover, the index function can also be
constructed using ideas related to successful heuristics from branch-and-bound that combine (with
appropriately constructed weights) data from an LP bound associated with the region with values
obtained by sampling. This may be thought of as a structure-exploiting alternative to branch-and-
bound heuristic estimation procedures based on integerization penalties (these compute estimates
at a node by combining the LP bound at a node with so-called penalty pseudo-costs on non-integer-
valued variables).

The NP method has a number of additional features worth highlighting here. The Markov
property of the NP method provides a powerful approach for the study of the convergence rates and
stopping rules. This research topic is closely connected to an exciting area of modern mathematical
research, the study of quantitative convergence rates of Markov chains.

Another remarkable feature of the NP framework is that it can combine features of global search
partitioning and local search heuristics in a natural way. It replaces the initialization or guessing
procedures for finding initial solutions typical of local search methods by starting with a partition of
the feasible region into an initial promising region (in which only a subset of the variables are fixed)
and a complementary region. The NP algorithm can also take maximum advantage of parallel
computer architectures. In every iteration, the algorithm looks at M + 1 regions, each of which
can be handled independently in a parallel or distributed computing environment.

In order to take advantage of the supply chain problem structure via NP, we first construct a
heuristic as described below to develop a set of efficiency indices for the warehouses. These indices
provide a ranking of warehouses that is then used as a basis for the selection of a subset of the
warehouses as a “warm start” promising region for NP. (This is not an initial solution in the sense
that all warehouse variables are fixed, but rather a partial solution in which only some of them
are fixed. Moreover, the complementary region contains all other possible solutions.) The ranking
is then also used as a basis for biased sampling approaches for an NP framework that employs
looping constructs available in the AMPL modeling language (these are also available in other
modeling languages as well) in conjunction with the CPLEX MIP solver to generate and then solve

subproblems corresponding to samples for the promising region and complementary region.

4.3.1 A Heuristic Procedure for Ranking Warehouses (LP-based)

We generate via the following three-step procedure a heuristic warehouse ranking based on average
unit costs for the warehouses by solving (via CPLEX) a total cost optimization problem for each
warehouse and then scaling the optimal value by dividing by the warehouse capacity:

Warehouse Ranking

1. Pick a warehouse from the set of warehouses and open it. Close all other warehouses. Solve
the problem that requires that the total warehouse throughput equal the warehouse capacity, replac-
ing the customers’ “demand” equations by upper bounds that limit product-customer shipments to
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at most the demand. (The integer variables corresponding to product-customer pairs are relaxed to
continuous variables.) The optimal value of this linear programming problem (involving only one
warehouse but all plants and customers) yields the lowest total cost associated with full utilization
of the warehouse. (Note that this optimal value also includes the fixed cost of the warehouse.)

2. Calculate an average unit cost for each warehouse by the dividing the total cost by the (fully
utilized) capacity of the warehouse.

3. Define an efficiency ranking for the set of warehouses according to the average unit costs.
(We are currently experimenting with variants of this ranking process in which the throughput is

set to an appropriate fraction of the warehouse capacity.)

4.3.2 An NP/CPLEX Implementation

We now describe an NP/CPLEX implementation that uses these unit cost rankings to generate
a “warm start” followed by biased sampling guided by the global NP viewpoint. This approach

involves the following parameters and sets:

e R: the rank cutoff value used for purposes of biased sampling (The top R ranked warehouses
are placed in a set called TOP, and the remaining warehouses are placed into a set called
BOTTOM.)

e p: the probability of choosing a warehouse from T'OP in the sampling process

e initNP: the number of warehouses to be set as open at the start of each major iteration
(initial promising region for the major iteration) (Here a major iteration is defined as the
branching process from the starting point to the first node at which all warehouses are fixed
(at which point a backtrack step is made to a new starting region).)

e S: the number of samples to be generated in each region (including the complementary
regions) (Each sample is a set of W open warehouses in the feasible set of the corresponding
region, and the optimal cost of the supply chain network with this set of warehouses is
determined by CPLEX. (In this context, each sample requires about 3 seconds to evaluate on
a 500MHz computer.))

NP/CPLEX Implementation for Supply Chain Design
The NP /CPLEX implementation is as follows (see Figure 2) For illustrative purposes, the figure
assumes that an initial promising region is constructed by opening the 6 top-ranked warehouses:

1. If iteration = 1 then the initial promising region is obtained by fixing the highest ranked
initN P warehouses as open. Else obtain a promising region by fixing an appropriate subset
of BestOPEN (see below) as open.

2. Generate S samples for each of the following regions:
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Figure 2: CPLEX/Nested Partitions/CPLEX Hybrid (C-NP-C)

e Region 1 (first subset of the promising region): another warehouse is selected and set
as open (this warehouse is randomly selected from the set TOP with probability p, and
from the set BOTTOM with probability (1 —p) )

o Region 2 (remainder of the promising region): the newly selected warehouse is closed

o Region 3: complementary region (at least one of the warehouses used to define the

promising region is not allowed in the warehouse sets considered in this region)

For each region the remaining warehouses needed to complete each sample of W warehouses are
chosen from TOP and BOTTOM, where the probability of picking a warehouse from TOP is p
and picking a warehouse from BOTTOM is (1 — p). CPLEX is used to find the optimal shipping
pattern for each sample (set of warehouses). NP keeps track of the best sample as BestOPEN and
uses this information to either continue the path down from the promising region or to backtrack
to a subset of the complementary region.

The remainder of the process is analogous to the generic NP procedure. If backtracking is
needed because the bottom of the tree is reached (all warehouses are fixed) or because the best
sample occurs in the surrounding region, then we choose initN P warehouses from BestOPEN as
the new starting set (performing the selection so that this set does not coincide with a previous
starting set) and return to step 1. In summary, NP utilizes the results of the warehouse ranking
heuristic to begin a search process that initially seeks to focus on a warehouse subset predicted to
be in the optimal solution according to this ranking, but the framework nevertheless maintains a
global view of the feasible set and therefore allows completely different solutions (unrelated to the
ranking) to be considered.

We note the similarity of this NP implementation to the heuristic portion of the new LR method
discussed in section 4.2. In both methods, the focus is on the selection of good subsets of warehouses,
which are then input to an MIP solver for evaluation. In our LR approach, a warehouse ranking

takes place using information from Lagrangian multipliers; in NP, warehouse subsets are selected
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lplants warehouses open warehouses customers products

")
minimum 5 30 10 50 3
maximum 10 100 20 200 10

Table 2: Max and min values of design parameters

using information from single warehouse subproblems based on original costs, results from promise
index considerations, and the biased sampling procedure.

Since our NP framework utilizes the solution of MIPs over partitions of the original feasible set, a
lower bound could be obtained by choosing the smallest LP relaxation value over any such partition.
While this lower bound would not be worse than that obtained by the LP relaxation of the standard
MIP model (which is used in C-NP-C), in our computational experience as discussed below, better
lower bounds can be obtained from the strong MIP model (either from its LP relaxation or from
the new LR approach). Thus, in order to have a relatively good lower bound in order to provide a
confidence interval for the C-NP-C results, the LP relaxation value of the strong MIP model is used
as the lower bound. Note that the computation of this lower bound utilizes the same AMPL model
used in the C-NP-C process, except that the cut constraints (4.1) are added. We are currently also
pursuing research on other methods for lower bound computation based on duals generated during
the C-NP-C process, and these alternatives are described in section 5.

5 Numerical Results

Using a factorial design approach, we set min and max values (see Table 2) for the 5 design
parameters: numbers of plants, warehouses, open warehouses, customers, and products. This
resulted in 2% = 32 problem sets of different sizes. Since some of the smaller problems of this set
were easily solved by the direct application of CPLEX, we subsequently generated ten additional
larger problems by selectively increasing in some instances the number of customers to 250 or the
number of products to 15 (these larger problems are numbered 33-42). See Table 3 for the full
problem sizes of the smallest and the largest data sets generated. After randomly generating the
data for each problem, we froze the data so that various solution strategies could be compared for
each problem. (See Table 4 for the complete test problems suite.)

5.1 MIP CPLEX 8.1 vs Strong Formulation MIP CPLEX 8.1

Table 6 below summarizes the results of the 2-hour CPLEX 8.1 runs using the MIP formulations
presented earlier. The strong formulation often provides superior lower bounds for the large prob-
lems. However, the feasible solutions obtained are often inferior, perhaps due to the fact that the
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# plants warehouses open warehouses customers products
1 5 30 10 50 3
Problem Size: constraints = 286
binary variables = 4,530
continuous variables = 450
42 10 100 20 250 15
Problem Size: constraints = 5,501
binary variables = 375,000
continuous variables = 15,000

Table 3: Problem dimensions for smallest (# 1) and largest (# 42) test problems

root relaxation times are much longer, and not much time is left to branch to explore the feasible

region for good solutions.

5.2 Overall comparison of numerical results

In our computational tests for both the conventional and new LR methods, we initialize the La-
grangian multipliers to be the optimal dual variables from the strong formulation LP relaxations.
The computational results indicate that the new LR method generates slightly better lower bounds
than the conventional one. Moreover, it usually generates better feasible solutions as well. In only
one instance among forty—two is the gap obtained by the new method larger than that obtained by
the conventional, and it is sometimes significantly smaller.

The lower bounds provided by both Lagrangian methods provide slightly stronger bounds than
those of the LP relaxation of the strong formulation (Table 5). This suggests that if we could
maximize (or approximately maximize) the Lagrangian function efficiently without first solving
the strong formulation LP relaxation, we could generate lower bounds that are significantly better
than this relaxation. We have investigated approaches that use dual variables from the optimization
problems associated with the NP hybrid approach, and believe that research in this direction may
be promising since C-NP-C quickly provides high-quality feasible solutions and corresponding dual
variables (the challenge here is that C-NP-C fixes many or all of the binary variables associated
with the warehouses, so that only a partial set of duals is available).

Our computational experience (see Table 8) also demonstrates that while our new LR approach
often yields significantly better feasible solutions than standalone CPLEX for the more difficult
problems in the test suite, the use of CPLEX within the NP framework of the C-NP-C hybrid
generally outperforms even the LR methods in terms of quality of feasible solutions. Specifically,
for the 20 harder problems in the test suite, C-NP-C obtains the best solution in 15 cases, the
new LR approach is better in 3 cases, while standalone CPLEX is better in only 2 cases (one of
these cases corresponds to a standard MIP model, and the other is the stronger model). Moreover,
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Problem # | plants | warehouses | W fized # warehouses | customers | products
1 5 30 10 50 3
2 5 30 10 50 10
3 5 30 10 200 3
4 5 30 10 200 10
5 5 30 20 50 3
6 5 30 20 50 10
7 5 30 20 200 3
8 5 30 20 200 10
9 5 100 10 50 3
10 5 100 10 50 10
11 5 100 10 200 3
12 5 100 10 200 10
13 5 100 20 50 3
14 5 100 20 50 10
15 5 100 20 200 3
16 5 100 20 200 10
17 10 30 10 50 3
18 10 30 10 50 10
19 10 30 10 200 3
20 10 30 10 200 10
21 10 30 20 50 3
22 10 30 20 50 10
23 10 30 20 200 3
24 10 30 20 200 10
25 10 100 10 50 3
26 10 100 10 50 10
27 10 100 10 200 3
28 10 100 10 200 10
29 10 100 20 50 3
30 10 100 20 50 10
31 10 100 20 200 3
32 10 100 20 200 10
33 5 100 10 50 15
34 5 100 10 250 5
35 5 100 10 250 10
36 5 100 20 250 10
37 10 30 10 250 10
38 10 100 10 50 15
39 10 100 10 250 5
40 10 100 10 250 15
41 10 100 20 50 15
42 10 100 20 250 15

Table 4: Test problems suite
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# | conventional | Time (sec) strong Time (sec)
1 312,344 0.13 359,898 2
2 1,011,794 0.56 1,291,474 31
3 1,314,169 0.48 1,571,885 12
4 3,958,458 2.19 5,145,410 240
5 312,344 0.11 328,332 2
6 1,011,794 0.52. 1,095,773 15
7 1,314,169 0.48 1,382,042 6
8 3,958,458 2.15 4,355,656 96
9 216,026 0.63 303,180 22
10 738,201 2.69 1,154,925 478
11 868,749 2.72 1,248,975 178
12 2,940,204 11.42 4,658,537 2736
13 216,026 0.64 249,952 14
14 738,201 2.62 945,729 390
15 868,749 2.57 1,047,292 137
16 2,940,204 11.05 3,851,205 2840
17 249,024 0.15 310,938 2
18 867,003 0.56 1,103,949 19
19 1,054,227 0.56 1,319,928 31
20 3,471,137 2.56 4,475,599 - 325
21 249,024 0.13 269,124 1
22 867,003 0.54 945,193 11
23 1,054,227 0.49 1,142,485 11
24 3,471,137 2.36 3,792,974 139
25 211,562 0.71 299,476 26
26 642,890 2.78 976,206 388
27 761,391 2.91 1,124,278 208
28 2,666,086 13.18 4,066,798 2787
29 211,562 0.67 251,446 16
30 642,890 2.67 803,064 254
31 761,391 2.97 924,693 124
32 2,666,086 12.27 3,374,194 1722
33 1,099,480 4.11 1,766,749 1284
34 1,812,550 6.32 2,797,910 981
35 3,633,169 13.89 5,753,405 3379
36 3,633,169 13.23 4,751,316 2453
37 4,379,097 3.27 5,674,061 404
38 988,572 4.99 1,536,800 1074
39 1,635,913 6.45 2,460,995 741
40 4,811,311 26.03 7,565,944 9438
41 988,572 4.66 1,259,151 872
42 4,811,311 24.62 6,217,881 4788
Table 5: Values of LP Relaxations (conventional vs. strong formulation)
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conventional strong

# LB UB Gap(%) LB UB Gap(%)
1 364,551 364,588 93 OP 364,551 364,588 | 5909 OP
2 | 1,338,657 1,339,077 0.03 1,335,991 | 1,341,108 0.38

3 | 1,587,341 1,587,500 758 OP 1,587,264 | 1,587,538 0.02

4 | 5,142,840 5,421,679 5.14 5,146,147 | 5,404,865 4.79

5 336,411 336,445 25 OP 336,411 336,445 114 OP
6 | 1,097,903 1,098,013 1013 OP | 1,097,876 | 1,098,062 0.02

7 | 1,385,342 1,385,480 770 OP 1,385,357 | 1,385,480 | 3549 OP
8 | 4,381,708 | 4,382,040 | 2805 OP | 4,372,600 | 4,382,335 0.22

9 312,051 312,088 863 OP 312,957 312,088 | 2109 OP
10 | 1,154,488 1,260,763 8.43 1,160,255 | 1,298,631 10.66
11 | 1,240,612 1,356,147 8.52 1,254,834 | 1,328,182 5.52
12 | 4,162,943 5,905,827 29.51 4,658,925 | 6,823,737 31.72
13| 253,210 253,235 1610 OP 252,892 253,588 0.27
14 | 947,388 994,262 4.71 948,771 989,010 4.07
15 | 1,047,250 1,072,665 2.37 1,051,831 | 1,061,549 0.92
16 | 3,849,749 | 4,092,693 5.94 3,851,556 - NFSTL
17 | 325,076 325,109 170 OP 325,074 325,109 | 447 OP
18 | 1,157,286 1,157,402 7163 OP | 1,132,906 | 1,159,687 2.31
19 | 1,367,560 | 1,369,319 0.13 1,342,308 | 1,381,765 | 2.86
20 | 4,473,427 | 4,896,226 8.64 4,505,268 | 4,816,653 6.46
21 | 272,630 272,658 54 OP 272,630 272,658 | 317 OP
22 | 948,161 948,256 3321 OP 947,762 948,526 0.08
23 | 1,151,626 1,152,388 0.07 1,151,405 | 1,152,518 0.10
24 | 3,815,316 3,822,137 0.18 3,811,164 | 3,820,765 0.25
25 | 309,347 322,451 4.06 304,565 320,523 4.98
26 | 975,571 1,164,312 16.21 980,481 1,155,400 15.14
27 | 1,101,380 1,233,919 10.74 1,124,522 | 1,328,515 15.35
28 | 3,580,816 5,263,489 31.97 4,067,227 | 5,528,464 26.43
29 | 256,561 256,588 5531 OP 254,391 259,860 2.10
30 | 803,005 860,173 6.65 803,350 862,556 6.86
31| 924,811 950,509 2.70 927,633 942,338 1.56
32 | 3,372,835 3,688,002 8.55 3,374,311 | 3,769,076 10.47
33 | 1,765,916 2,008,789 12.09 1,767,087 | 2,112,366 16.35
34 | 2,618,971 3,357,485 22.00 2,797,910 | NFSTL -

35 | 4,745,800 7,521,489 36.90 5,753,880 | 8,428,109 31.73
36 | 4,659,669 5,110,524 8.82 4,751,418 | 5,353,491 11.25
37 | 5,671,983 6,479,411 12.46 5,714,385 | 6,651,057 14.08
38 | 1,535,728 1,878,195 18.23 1,537,089 | 1,909,403 19.50
39 | 2,303,216 3,009,080 23.46 2,461,300 | 3,346,689 26.46
40 | 5,639,197 9,759,251 42.22 7,565,944 1 | NFSTL -

41 | 1,258,827 1,351,726 6.87 1,259,284 | 1,344,238 6.32
42 | 5,440,735 8,019,040 32.15 6,218,055 | NFSTL -

Table 6: Comparison of 2-hour CPLEX 8.1 runs (conventional vs. strong formulation).

X OP indicates optimal solution obtained in X seconds; NFSTL indicates “no feasible solution

obtained in time limit
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because of the effectiveness of the fast warm starting procedure employed by NP, the times required
by C-NP-C to reach those highest quality solutions are generally only a few minutes (after which
only rarely is a slightly better solution found). This is in strong contrast to all of the other methods
which either typically produce poor quality solutions even after two hours (standard MIP approach)
or which require initial solution of the relaxation of the strong MIP formulation, an initialization
procedure that itself often requires an hour or more (and, in one case, more than two hours) for
the more difficult problems. Thus, the NP framework for the use of BC solvers has proven to be
efficient, reliably fast, and effective in terms of providing high-quality solutions.
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conventional new

# LB UB Gap (%) LB UB Gap (%)
1 359,898 387,058 7.02 361,703 364,732 0.83
2 | 1,291,474 1,421,743 9.16 1,297,676 | 1,341,939 3.30
3 | 1,571,885 1,788,259 12.10 1,572,982 | 1,588,095 0.95
4 | 5,145,410 5,620,029 8.45 5,148,021 | 5,392,345 4.53
5 328,338 346,995 5.38 330,004 337,763 2.30
6 | 1,095,773 1,109,605 1.25 1,097,500 | 1,105,361 0.71
7 | 1,382,050 1,399,606 1.25 1,385,150 | 1,387,668 0.18
8 | 4,355,656 4,429,624 1.67 4,360,140 | 4,382,279 0.51
9 303,180 431,800 29.79 304,590 319,109 4.55
10 | 1,154,925 1,456,219 20.69 1,159,971 | 1,267,463 8.48
11 | 1,248,975 1,514,917 17.56 1,250,556 | 1,318,355 5.14
12 | 4,658,537 5,563,920 16.27 4,658,912 | 5,240,857 11.10
13 | 249,952 321,686 22.30 250,980 253,354 0.94
14 | 945,729 1,086,835 12.98 947,015 999,058 5.21
15 | 1,047,292 1,246,990 16.01 1,049,092 | 1,066,242 1.61
16 | 3,851,205 4,266,963 9.74 3,861,423 | 4,063,299 5.21
17 | 310,938 365,599 14.95 312,395 326,798 4.41
18 | 1,103,950 1,189,556 7.20 1,109,058 | 1,158,106 4.24
19 | 1,319,930 1,418,915 6.98 1,324,283 | 1,375,694 3.74
20 | 4,475,600 4,885,294 8.39 4,481,829 | 4,853,653 7.66
21 | 269,129 277,044 2.86 270,380 272,905 0.93
22 | 945,198 966,647 2.22 947,934 952,218 0.45
23 1 1,142,541 1,166,517 2.06 1,144,638 | 1,154,686 0.87
24 | 3,792,974 3,834,267 1.08 3,798,546 | 3,823,743 0.66
25 | 299,476 400,508 25.23 300,839 324,375 7.26
26 | 976,206 1,199,867 18.64 980,089 1,126,702 13.01
27 | 1,124,280 1,401,298 19.77 1,126,600 | 1,238,026 9.00
28 | 4,066,798 4,979,825 18.33 4,067,756 | 4,780,657 14.91
29 | 251,446 301,796 16.68 252,397 260,898 3.26
30 | 803,064 917,686 12.49 806,022 858,294 6.09
31| 924,693 1,024,008 9.70 926,208 947,068 2.20
32 | 3,374,194 3,737,265 9.72 3,375,278 | 3,589,712 5.97
33 | 1,766,750 2,161,456 18.26 1,767,329 | 2,007,048 11.94
34 | 2,797,910 1,323,887 15.82 2,798,405 | 3,139,575 10.87
35 | 5,753,405 6,490,988 11.36 5,753,470 | 6,476,127 11.16
36 | 4,751,316 5,142,009 7.60 4,751,486 | 5,042,011 5.76
37 | 5,674,061 6,490,148 12.57 5,674,755 | 6,281,830 9.66
38 | 1,536,800 1,917,258 19.84 1,539,309 | 1,793,900 14.19
39 | 2,460,995 2,956,774 16.77 2,461,245 | 2,705,557 9.03
40 | 7,565,944 8,924,669 15.22 7,566,983 | 8,850,466 14.50
41 | 1,259,151 1,423,115 11.52 1,262,273 | 1,358,110 7.06
42 | 6,217,881 6,630,528 6.22 6,219,078 | 6,660,339 6.63

Table 7: Comparison of Lagrangian Relaxation runs using strong LP duals (conventional vs. new
formulation)
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6 Conclusions and Directions for Future Research

Our computational results demonstrate that for large-scale supply chain design problems, the
Nested Partitions approach significantly outperforms both general-purpose combinatorial optimiz-
ers (such the branch-and-cut solver within CPLEX) and specialized approaches such as those based
on Lagrangian relaxation. The Nested Partitions framework can effectively combine problem-
specific heuristics with MIP tools (such as AMPL/CPLEX), so for this problem class we have
developed an excellent warehouse ranking heuristic and used this heuristic to construct a “warm
start” procedure followed by an effective biased sampling approach (using CPLEX to solve the
MIPs corresponding to the samples) that uses this ranking and is guided by a global view of the
problem. This research has also established the applicability of the AMPL/CPLEX modeling-
language/solver combination as an excellent means for the implementation of the NP framework
for global meta-hybrids, and thus represents a novel and successful use of these powerful software
tools.

There are many directions for further investigation suggested by our approach. One particularly
promising direction that we are pursuing involves the construction of composite lists of preferred
warehouses. In the results above, we used biased sampling that relied solely on an optimization-
based initial ranking of the warehouse list. Rather than simply relying on one ranking determined
at the start of the procedure, we have also considered more sophisticated approaches such as the
construction of composite highly-ranked subsets comprised of warehouses selected via two different
initial ranking schemes (for example, combining warehouses ranked highly by either efficiency or
capacity has produced excellent results in some problems). Alternatively, the highly-ranked group
could evolve dynamically by adding to it new warehouses that appear in high-quality solutions.
For the larger instances we considered, no method appears to be capable of generating high-quality
lower bounds quickly. Significant time is required for CPLEX to generate reasonable bounds, either
by branching (conventional formulation) or by solving the root LP relaxation (strong formulation).
Consequently, we are investigating approaches for the generation of lower bounds using information
from the NP framework. For example, dual information from the samples generated within the
NP framework could used or sample information could be coordinated via a column generation
approach, and the corresponding duals from this approach could be used in a lower bound generation
process. Finally, the promise index for a region could be made a function of both lower bound (LP
relaxation for the region or a superset of the region) and upper bound (sampling) information, since
both types of information are available within this hybrid approach.

The Multicommodity Distribution System Design (MDSD) problem class investigated in this
research has a constraint, based upon interaction with our industrial partner (and also quite com-
mon in the literature) requiring the selection of exactly W warehouses from the list of candidate
locations. An interesting and equally-important alternative is the problem class in which at most
W warehouses can be chosen to satisfy the constraints. The Lagrangian Relaxation and hybrid
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C-NP-C methods considered here may be suitably modified to handle that problem class.

Other problem areas well-suited to optimization-based implementation of the NP framework
are also under investigation. For example, problems arising from radiation treatment planning
optimization (D’Souza et al., 2003) as well as the design of large-scale internet data centers (San-
tos et al., 2002) appear particularly appropriate for our approach since they can be thought of
involving “assignments of certain critical resources followed by optimization of the processes that
depend on those assignments. Good problem-specific ranking processes for the critical resources
are available for those problem classes. Using these ranking within the framework of NP-directed
biased sampling (with samples being evaluated by using branch-and-cut to solve MIPs in the re-
maining variables) is expected to provide a highly-effective approach to these large and extremely
challenging combinatorial problems. We have demonstrated in this paper that the looping con-
structs within well-known optimization modeling languages combined with good branch-and-cut
solvers provide an excellent tool for implementing this approach to combinatorial optimization,
and we plan to continue our development of such methods and software for a variety of challenging

problem classes.
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Appendix B — AMPL Code for C-NP-C Hybrid
reset data;

#NUMBER OF WAREHOUSES TO PICK FROM THE UNIT COST RANKINGS
param FixUnit default 20;

#NUMBER OF WAREHOUSES TO PICK FROM THE FIXED COST RANKINGS, DO NOT FORGET
#COMMENT OUT THE FOR LOOP BELOW IF YOU ARE NOT USING THESE RANKINGS
param FixFixed default 0;

#THE NUMBER OF WAREHOUSES TO FIX INITIALLY IN NP SCHEMA
param NP default 6;

#number of samples TO GENERATE IN EACH REGION
param S default 6;

#THE PROBABILITY OF CHOOSING A WAREHOUSE FROM THE BOTTOM WHEN SAMPLING
param prob;
let prob := 0;

#NUMBER OF ITERATIONS FOR THE NP RUN
param numIterations default 2000;

TR e e e P LT P P
param plants default 5;

param warehouses default 100;

param W default 10;

param customers default 50;
param products default 10;

e e e e e e e
set K := 1l..products;

set J := 1l..warehouses;

set I := 0..(customers - 1);

set L := 1..plants;

printf "%-20s%3d\n", "plants", plants;

printf "%-20s%3d\n", "warehouses", warehouses;
printf "%-20s%3d\n", "open warehouses", W;
printf "%-20s%3d\n", "customers", customers;
printf "%-20s%3d\n", "products", products;




param ¢ {L, J, K} >= 0; # shipping cost from plant 1 to warehouse j of pr
param 4 {J, I, K} >= 0; # shipping cost from warehouse j to customer i
# of product k
param £ {J} >= 0; # fixed cost of warehouse j
param q {J} >= 0; # capacity of warehouse j
param s {K} >= 0; # volume of one unit of product k
param v {L, K} >= 0; # supply at plant 1 of product k
param w {I, K} >= 0; # demand of customer i for product k
POt

option randseed ’'7777’;
param temp;

param avg_c;

param avg_d;

param totalUnits;

#printf "Randomly generating c...\n";
for {(j, k, 1) in {J, K, L}}
let c[1l, j, k] := Uniform(0,200);

#printf "Randomly generating d...\n";
for {(i, j, k) in {I, J, K}}
let d[j, i, k] := Uniform(0,200);

#printf "Randomly generating s...\n";
for {k in K}
let s[k] := Uniform(10,20);

#printf "Randomly generating w...\n";
for {(i, k) in {I, K}}
let w[i, k] := Uniform(10,99);

#printf "Randomly generating v...\n";

for {(k, 1) in {X, L}} {
let temp := (sum {i in I} w[i, k]) / plants;
let v[1l, k] := Uniform(temp, 2.5 * temp);

}

#printf "Randomly generating g...\n";
for {j in J} {

let temp := (sum{ (i, k) in {I, K}} wli, k]l * s[k]) / W;
let gl[j] := Uniform(0.95 * temp, 1.33 * temp);
}
let avg c := (sum {(1, 3, k) in {L, J, K}} cl1, §, k1) / card({L, J,

55




let avg d = (sum {(j, i, k) in {3, I, K}} dIj, i, k1) / card({Jd, I,
let totalUnits := sum{ (i, k) in {I, K}} wli, k];
let temp = (avg_c + avg_d) * totalUnits / 18 / W;

#printf "Randomly generating f£...\n";
for {j in J}

let £[j] := Uniform(temp, 2 * temp);
B o o oo
var U {L, J, K} >= 0; # units from plant 1 to warehouse j of product k
var X {J, I, K} binary; # 1 iff warehouse j supplies customer i with prod
var Y {J} binary; # 1 iff warehouse j is open

var dummyX {J, I, K} >= 0;
subject to constraintWarehouseCapacity2 {j in J}:
sum {(i, k) in {I, K}} wli, k] * s[k] * dummyX[j, i, k] >= qlj] * YI[j];
subject to constraintCustomerOneWarehousePerProduct2 {(i, k) in {I, K}}:
sum {j in J} dummyX[j, i, k] <= 1;
subject to constraintWarehouseInflowEqualsOutflow2 {(j, k) in {J, K}}:
sum {1 in L} U[l, j, k] = sum {i in I} w([i, k] * dummyX[j, i, k];
subject to constraintWarehouseCapacity3 {j in J}:
sum {(i, k) in {I, K}} wli, k] * s[k] * dummyX[j, i, k] <= ql[j] * YI[j];
subject to constraintCustomerOneWarehousePerProduct3 { (i, k) in {I, K}}:

sum {j in J} AummyX[j, i, k] = 1;

# shipments to customers cannot exceed warehouse capacity
subject to constraintWarehouseCapacity {j in J}:

sum {(i, k) in {I, K}} wli, k]l * s[k]l * X[j, i, k] <= ql[j] * Y[]];

# open W warehouses

subject to constraintOpenWarehouses:
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# a given customer can receive a given product from exactly 1 warehouse
subject to constraintCustomerOneWarehousePerProduct { (i, k) in {I, K}}:

sum {j in J} X[j, i, k] = 1;

# shipments to warehouses cannot exceed plant capacity
subject to constraintPlantCapacity {(k, 1) in {K, L}}:

sum {j in J} UI[1, j, k]l <= vI[1, k];

# what comes into a warehouse must go out
subject to constraintWarehouseInflowEqualsOutflow {(j, k) in {J, K}}:

sum {1 in L} U[l, j, k] = sum {i in I} w([i, k] * X[j, i, kl;

param theta {J, K};
param lambda {I, K};
param tempMax;

param tempMin;

param subprob default 1;
param subprobCost {J};

#for {(j, k) in {J, K}}
# let thetalj, k] := 1 + min {1 in L} c[l, Jj, kl;

#for {(i, k) in {I, K}} {

# let tempMax := max {j in J} wli, k] * (thetalj, k]l + dlj, i, kl);
# let tempMin min {j in J} wli, k] * (thetal[j, k] + d[j, i, kl);
# 1let lambdal[i, k] 0.45 * tempMax + 0.55 * tempMin;

#}

minimize totalCostLR1:

sum {(j, k, 1) in {J, K, L}} (c[1, j, k] - thetalj, k1) * U[1l, j, k]




minimize totalCostLR2:
sﬁm {3 in J} £031 * Y[]]
+ sum {(i, j, k) in {I, J, K}} (dlj, i, k] * wli, k] - lambdal[i, k]
+ thetalj, k] * w[i, k]) * X[j, i, k]
minimize totalCostLR2Sub:
f [subprob] * Y[subprob] +
sum {(i, k) in {I, K}} (d[subprob, i, k] * w[i, k] - lambdal[i, kl

+ theta[subprob, k] * w[i, k]) * X[subprob, i

S e e e P e e
minimize cost:

sum {j in J} £flj1 * Y[]]

+ sum {(j, k, 1) in {J, K, L}} cll, j, k1 * U1, j, kI

+ sum {(i, j, k) in {I, J, K}} dalj, i, k1l * wli, k] * X[j, i, k];

minimize cost2:
sum {j in J} f£L31 * YI[3]
+ sum {(j, k, 1) in {J, K, L}} cll, j, k]l * U1, j, kil

+ sum {(i, j, k) in {I, J, K}} dlj, i, k1 * w[i, k] * dummyX[j, i, k

set WAREHOUSES;
set ARG_MIN;

set OPEN;

set BEST_OPEN;
set PUT_IN;

set PUT_IN_ ONE;
set PUT_IN_ZERO;

param errorTheta {J, K};
param errorLambda {I, K};
param thetaRho;

param lambdaRho;
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param lowerBound;
param bestLowerBound default -Infinity;
param bestUpperBound default Infinity;

param iterations default 0;
param gap default 1;
param feasible count default 0;

param value default 1;

param SortedWarehouses {J};
param SortedWarehousesFixed {J};

param costwh {J};
data duallOrank;

drop constraintWarehouseCapacity3;

drop constraintWarehouseCapacity2;

drop constraintWarehouseCapacity;

drop constraintOpenWarehouses;

drop constraintCustomerOneWarehousePerProduct3;
drop constraintCustomerOneWarehousePerProduct;
drop constraintWarehouseInflowEqualsOutflow;
objective cost2;

#for {j in J} {

# for {k in J} fix Y[k] := 0;
# restore constraintWarehouseCapacity2I[j];
# fix Y[j] := 1;
# solve;
# let costwh[j] := cost2/qljl;
# unfix Y;
# drop constraintWarehouseCapacity2I[j];

#}

drop constraintWarehouseInflowEqualsOutflow2;
drop constraintCustomerOneWarehousePerProduct2;
restore constraintWarehouseCapacity;

restore constraintOpenWarehouses;

restore constraintCustomerOneWarehousePerProduct;
restore constraintWarehouseInflowEqualsOutflow;
objective cost;

let WAREHOUSES := J;




let value := 1;

for {j in J} {
let tempMin := min {ww in WAREHOUSES} costwh [ww] ;
for {ww in WAREHOUSES: costwh[ww] = tempMin} {

let SortedWarehouses[value] := ww;

let WAREHOUSES := WAREHOUSES diff {ww};
let value := value + 1;

break;

}

if value = warehouses + 1 then break;

}
let WAREHOUSES := J;
let value := 1;

for {j in J} {
let tempMin := min {ww in WAREHOUSES} f [ww];
for {ww in WAREHOUSES: f[ww] = tempMin} {

let SortedWarehousesFixed[value] := ww;
let WAREHOUSES := WAREHOUSES diff {ww};
let value := value + 1;

break;

}

if value = warehouses + 1 then break;

set TOP;
set BOTTOM;

let TOP := {};
let BOTTOM := {};

for {j in 1..FixUnit} {
let TOP := TOP union {SortedWarehousesl[j]};

}

# THIS FOR LOOP HAS TO BE COMMENTED OUT FOR THE CASE WHERE WE ARE
# JUST USING THE UNIT COST RANKINGS

#for {j in 1..FixFixed} ({
# let TOP := TOP union {SortedWarehousesFixed[jl};

#)

let BOTTOM := J diff TOP;

param counter default 0;




param SortedMixTop {1..card(TOP)};
param SortedMixBottom {1..card(BOTTOM) };

let counter := 1;

for {j in TOP} ({
let SortedMixTop [counter] := j;
let counter := counter + 1;

}

let counter := 1;

for {j in BOTTOM} ({
let SortedMixBottom[counter] := j;
let counter := counter + 1;

}

param bestPromisingBound;

#let bestPromisingBound := bestUpperBound;
let bestPromisingBound := Infinity;

set Pro OPEN;

let Pro OPEN := {};

#let Pro_OPEN := BEST_OPEN;
#for {j in 1..W} let Pro OPEN := Pro_OPEN union {SortedWarehouses([jl};

let value := 1;

let PUT IN := {};
let PUT _IN ONE := {}
let PUT IN_ZERO := ({

param count default 0;
unfix Y;

let iterations := 0;

param NPdefault;
let NPdefault := NP;

option solver _msg 1;
option omit_zero_rows 1;
option cplex_options ‘mipgap = 0.03’
‘timelimit = 10’
‘timing = 1’
'solutionlim = 1';




restore constraintOpenWarehouses;

restore constraintWarehouseCapacity;

restore constraintCustomerOneWarehousePerProduct;
restore constraintPlantCapacity;

restore constraintWarehouseInflowEqualsOutflow;
objective cost;

param SurroundValue;
param PromisingValue;
param mark default 0;
param CheckMe;

param key;

let CheckMe := 0;

set copyTOP;
set copyBOTTOM;

let copyTOP := TOP;
let copyBOTTOM := BOTTOM;

set SurroundTOP;
set SurroundBOTTOM;

let SurroundTOP := TOP;
let SurroundBOTTOM := BOTTOM;

param randomizer;
let counter := 0;
#repeat loopl {
# if CheckMe = 0 then let randomizer := Uniform01();
# if (randomizer <= prob) then {
# let key := SortedMixBottom[(Irand224() mod card (BOTTOM) ) +11];

# let CheckMe := 1;
# if (key in copyBOTTOM) then {

# let PUT IN ONE := PUT_IN_ONE union {key};
# let counter := counter + 1;

# let copyBOTTOM := copyBOTTOM diff {key};

# let CheckMe := 0;

# )

#}




# if (randomizer > prob) then {
# let key := SortedMixTop[(Irand224() mod card(TOP))+1];
# let CheckMe := 1;
# if (key in copyTOP) then {

# let PUT IN ONE := PUT_IN_ONE union {key};
# let counter := counter + 1;
# let copyTOP := copyTOP diff {key};

# let CheckMe
# }
# }
# #display CheckMe;
# if counter = NP then break loopl;

#}

0;

for {j in TOP} {

let PUT IN ONE := PUT_IN_ONE union {j};
let copyTOP := copyTOP diff {j};

let counter := counter + 1;

if counter = NP then break;

}
display PUT_IN ONE;

set CcopyBOTTOM;
set CcopyTOP;

let CcopyBOTTOM := copyBOTTOM;
let CcopyTOP := copyTOP;

param SpecialKey;

param keyTOP;
param keyBOTTOM;

shell ‘date’;

repeat until (iterations = numlterations) {
let iterations := iterations + 1;

display iterations;

for {t in 1..8} {

shell ’'date’;
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let counter := 0;
for {j in PUT_IN ONE} {
fix Y[j]:= 1;

}

for {j in PUT_IN_ZERO} fix YI[j] := 0;
let CheckMe := 0;

repeat loop4 {
if counter = W-NP-1 then break loop4;
let randomizer := Uniform01();

if (randomizer <= prob) then
repeat until (CheckMe = 1)
let key := SortedMixBottom[(Irand224() mod card(B
if (key in copyBOTTOM) then {
fix Y[key] := 1;
let counter := counter + 1;
let copyBOTTOM := copyBOTTOM diff {key};
let CheckMe := 1;

}
}

if (randomizer > prob) then
repeat until (CheckMe = 1) {
let key := SortedMixTop[(Irand224 () mod card(TOP)
if (key in copyTOP) then ({
fix Y[keyl] := 1;
let counter counter + 1;
let copyTOP copyTOP diff {key};

let CheckMe := 1;
}
}

if counter = W-NP-1 then break loop4;
let CheckMe := 0; '
1
if t=1 then let randomizer := UniformOl();
else let randomizer := -1;

let CheckMe := 0;

if (randomizer <= prob and randomizer >= 0) then
repeat until (CheckMe = 1) {
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let key := SortedMixBottom[(Irand224 () mod card(BOTTOM))+1];
if (key in copyBOTTOM) then {
fix Y[key] := 1;
let SpecialKey := key;
let CcopyBOTTOM := CcopyBOTTOM diff {key};
let CheckMe := 1;

}

if (randomizer > prob) then
repeat until (CheckMe = 1) {
let key := SortedMixTop[(Irand224 () mod card(TOP))+1];
if (key in copyTOP) then
fix Y[key] := 1;
let SpecialKey := key;
let CcopyTOP := CcopyTOP diff {key};
let CheckMe := 1;
}

}

let copyBOTTOM := CcopyBOTTOM;
let copyTOP := CcopyTOP;

fix Y[SpecialKey] := 1;

solve;

if ((solve_result='solved’ or solve_result num=422)
and bestPromisingBound > cost) then {

let Pro OPEN := {};

let bestPromisingBound := cost;

for {j in J:Y[jl=1} let Pro_OPEN := Pro_OPEN union {j};
let mark := 1;

}

display Y;

unfix Y;

}

for {t in 1..8} {

let counter := 0;

for {j in PUT_IN ONE} (
fix Y[3j]:= 1;

for {j in PUT IN ZERO} fix Y[j] := 0;
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let CheckMe := 0;
fix Y[SpecialKey] := 0;

repeat loop9 {

let CheckMe := 0;

let randomizer := Uniform01();

if counter = W-NP then break loop9;

if (randomizer <= prob) then
repeat until (CheckMe = 1) {
let key := SortedMixBottom[(Irand224 () mod card(BOTTOM
if (key in copyBOTTOM) then {

fix Y[key] := 1;
let counter := counter + 1;
let copyBOTTOM := copyBOTTOM diff {key};
let CheckMe := 1;

}

if (randomizer > prob) then
repeat until (CheckMe = 1) {
let key := SortedMixTop[(Irand224() mod card(TOP))+1];
if (key in copyTOP) then ({
fix Y[keyl := 1;
let counter
let copyTOP

counter + 1;
copyTOP diff {key};

let CheckMe := 1;
}
}
if counter = W-NP then break loop9;
}
solve;

if ((solve result='solved’ or solve_result _num=422)
and bestPromisingBound > cost) then {
let Pro OPEN := {};
let bestPromisingBound := cost;
for {j in J:Y[jl=1} let Pro OPEN := Pro_OPEN union {j};
let mark := 2; '

}

let copyBOTTOM := CcopyBOTTOM;




let copyTOP := CcopyTOP;
display Y;

unfix Y;
}

for {t in 1..8} {
let counter := 0;
let SurroundValue := (Irand224() mod NP) + 1;
for {j in PUT_IN_ONE} {
let counter := counter + 1;
if (counter = SurroundValue) then {
fix Y[]j] := 0;
if (§ in SurroundTOP) then let SurroundTOP := SurroundTOP diff {j};
else let SurroundBOTTOM := SurroundBOTTOM diff {j};
break;
}

}

let counter := 0;
repeat loopl2 {
let CheckMe := 0;
let randomizer := Uniform01();
if (randomizer <= prob) then
repeat until (CheckMe = 1) {
let key := SortedMixBottom[(Irand224 () mod card(BOTTOM
if (key in SurroundBOTTOM) then {
fix Y[key] := 1;
let counter := counter + 1;
let SurroundBOTTOM := SurroundBOTTOM diff {
let CheckMe := 1;

}

if (randomizer > prob) then
repeat until (CheckMe = 1) {
let key := SortedMixTop[(Irand224() mod card(TOP))+1];
if (key in SurroundTOP) then {
fix Y[keyl] := 1;
let counter := counter + 1;
let SurroundTOP := SurroundTOP diff {key};
let CheckMe := 1;

}

if counter = W then break loopl2;
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solve; :
if ((solve result='solved’ or solve_result_num=422)
and bestPromisingBound > cost) then {
let Pro OPEN := {};
let bestPromisingBound := cost;
for {j in J:Y[jl=1} let Pro_OPEN := Pro_OPEN union {j};
let mark := 3;

}

display Y;
unfix Y;
let SurroundTOP := TOP;
let SurroundBOTTOM := BOTTOM;

}

let counter := 0;

if (SpecialKey in BOTTOM) then let copyBOTTOM := copyBOTTOM union {specia
else let copyTOP := copyTOP union {SpecialKey};

if (mark = 0) then {
display ‘mark0’;

if NP < 9 then ({
let NP := NP + 1;
for {j in Pro_OPEN} {
if (j not in PUT_IN ONE) then ({
let PUT IN ONE := PUT_IN_ONE union {j};
if (j in copyBOTTOM) then let copyBOTTOM := copyBOTTOM diff {i};
else let copyTOP := copyTOP diff {j};

break;
}
}
} else {
let NP := NPdefault;
let PUT_IN ONE := {};

let PUT_IN_ZERO :
let CheckMe := 0;
let copyTOP := TOP;
let copyBOTTOM := BOTTOM;

{}:

for {m in 1..10000} {
if CheckMe = 0 then let randomizer := Uniform01l();
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if (randomizer <= prob) then

let key := SortedMixBottom[(Irand224() mod card(BOTTOM)) +

let CheckMe := 1;

if (key in copyBOTTOM) then {
let PUT IN ONE := PUT_IN ONE union {key};
let counter := counter + 1;

let copyBOTTOM := copyBOTTOM diff {key};
let CheckMe := 0;

}

if (randomizer > prob) then
let key := SortedMixTop|[ (Irand224 () mod card (TOP)) +11];
let CheckMe := 1;
if (key in copyTOP) then {
let PUT_IN ONE := PUT_IN_ONE union {key};
let counter counter + 1;
let copyTOP copyTOP diff {key};
let CheckMe 0;

}
if counter = NP then break;
}
}

display PUT_IN_ONE;

}

if mark = 1 then {
display ’'markl’;
let PUT_IN_ONE
let copyTOP := TOP;
let copyBOTTOM :

PUT_IN ONE union {SpecialKey};

BOTTOM;

if NP < 9 then {
let NP := NP + 1;
for {j in PUT_IN ONE} ({
if (§ in BOTTOM) then let copyBOTTOM := copyBOTTOM diff {j};
else let copyTOP := copyTOP diff {j};
}

for {j in PUT_IN_ZERO} ({
if (§ in BOTTOM) then let copyBOTTOM := copyBOTTOM diff {j};
else let copyTOP := copyTOP diff {j};

}

} else {
let NP := NPdefault;
let PUT_IN ONE := {};
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let PUT_IN_ZERO := {};
let counter := 0;

for {m in 1..10000} {
if CheckMe = 0 then let randomizer := UniformO1();

if (randomizer <= prob) then {
let key := SortedMixBottom[(Irand224 () mod card(BOTTOM
let CheckMe := 1;
if (key in copyBOTTOM) then {
let PUT _IN ONE := PUT_IN_ONE union {key};
let counter := counter + 1;
let copyBOTTOM := copyBOTTOM diff {key};
let CheckMe := 0;

}

if (randomizer > prob) then ({
let key := SortedMixTop [ (Irand224 () mod card(TOP))+1];
let CheckMe := 1;
if (key in copyTOP) then {
let PUT_IN ONE := PUT_IN _ONE union {key};
let counter counter + 1;
let copyTOP copyTOP diff {key};
let CheckMe 0;

]

}
}
if counter = NP then break;
}
}
display PUT_IN_ONE;

}

if mark = 2 then {
display ’‘mark2’;
let PUT_IN ZERO := PUT_IN_ZERO union {specialKey};

display PUT_IN_ZERO;
display PUT_IN ONE;

let copyTOP := TOP;
let copyBOTTOM := BOTTOM;

for {j in PUT_IN ONE} {

if (§ in BOTTOM) then let copyBOTTOM := copyBOTTOM diff {j};
else let copyTOP := copyTOP diff {j};
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}

for {j in PUT_IN ZERO} ({
if (j in BOTTOM) then let copyBOTTOM := copyBOTTOM diff {i};
else let copyTOP := copyTOP diff {j};

}

if mark = 3 then {
display ’'backtrack’;
let NP := NPdefault ;
let PUT IN ONE := {};
let PUT IN ZERO := {};

for {j in Pro OPEN} ({
let PUT_IN ONE := PUT_IN ONE union {j};

let counter := counter + 1;
if counter = NP then break;

display PUT_IN_ONE;
let copyTOP := TOP;
let copyBOTTOM := BOTTOM;

for {j in PUT_IN ONE} {
if (§ in BOTTOM) then let copyBOTTOM := copyBOTTOM diff {j};
else let copyTOP := copyTOP diff {j};
}
}

let CcopyTOP := copyTOP;
let CcopyBOTTOM := copyBOTTOM;

display bestPromisingBound;
display copyTOP;
display copyBOTTOM;

}

display bestPromisingBound;
display Pro_OPEN;
shell ’'date’;

}




